Skip to main content
Log in

Photocatalytic coloured rendering mortars: effect of TiO2 and iron oxide pigments on the physical, mechanical, hygric, and photoactive behaviour

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This paper discusses the physical, mechanical, hygric, and photoactive behaviour of photocatalytic coloured rendering mortars. 4% yellow, 4% brown, and 6% black iron oxide pigments were studied with 0%, 5%, and 10% titanium dioxide (TiO2) contents concerning white cement weight, resulting in twelve mortar types, including references. Mainly the addition of TiO2 and yellow pigment affected and reduced the mixtures’ flowability. Besides, mortars’ production was challenging due to the standard material quantities and execution methods. The presence of fine materials, the aggregates’ granulometry and the addition of superplasticiser resulted in mortars with high cohesion, entraining air; so, decreases in bulk density and, in some cases, mechanical strength were verified, especially for increasing contents of TiO2. Water absorption by capillarity decreased with the photocatalyst addition, while a minor impact was verified on the water vapour diffusion resistance factors. The pigments did not significantly influence the hygric behaviour. The photocatalytic efficacy of TiO2 was confirmed by RhB degradation tests. Mortars without pigments led to the highest colour differences (ΔE) throughout irradiation exposure irrespectively of the presence of 5% or 10% photocatalyst; yellow and brown mortars had increasing RhB degradation with increasing TiO2 contents and lower ΔE results than the specimens with no pigment. Black mortars were not efficiently evaluated through RhB degradation. The study’s novelty addresses the gap in understanding the combined effects of TiO2 with iron oxide pigments, and the investigation is primarily relevant to the practical application of photocatalytic coloured mortars in building facades, seeking aesthetic, economic and environmental benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Damas AL, do Rosário-Veiga M, Faria P, Silva AS (2018) Characterisation of old azulejos setting mortars: a contribution to the conservation of this type of coatings. Constr Build Mater 171:128–139. https://doi.org/10.1016/j.conbuildmat.2018.03.103

    Article  Google Scholar 

  2. López A, Guzmán GA, Di Sarli AR (2016) Color stability in mortars and concretes. Part 1: study on architectural mortars. Constr Build Mater 120:617–622. https://doi.org/10.1016/j.conbuildmat.2016.05.133

    Article  Google Scholar 

  3. Diamanti MV, Paolini R, Rossini M et al (2015) Long term self-cleaning and photocatalytic performance of anatase added mortars exposed to the urban environment. Constr Build Mater 96:270–278. https://doi.org/10.1016/j.conbuildmat.2015.08.028

    Article  Google Scholar 

  4. Fernandes CN, Ferreira RLS, Bernardo RDS et al (2020) Using TiO2 nanoparticles as a SO2 catalyst in cement mortars. Constr Build Mater 257:119542. https://doi.org/10.1016/j.conbuildmat.2020.119542

    Article  Google Scholar 

  5. Monteiro H, Moura B, Soares N (2022) Advancements in nano-enabled cement and concrete: innovative properties and environmental implications. J Build Eng 56:104736. https://doi.org/10.1016/j.jobe.2022.104736

    Article  Google Scholar 

  6. De Richter R, Caillol S (2011) Fighting global warming: the potential of photocatalysis against CO2, CH4, N2O, CFCs, tropospheric O3, BC and other major contributors to climate change. J Photochem Photobiol C Photochem Rev 12:1–19. https://doi.org/10.1016/j.jphotochemrev.2011.05.002

    Article  Google Scholar 

  7. Folli A, Pade C, Hansen TB et al (2012) TiO2 photocatalysis in cementitious systems: insights into self-cleaning and depollution chemistry. Cem Concr Res 42:539–548. https://doi.org/10.1016/j.cemconres.2011.12.001

    Article  Google Scholar 

  8. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C Photochem Rev 1:1–21. https://doi.org/10.1016/j.cemconres.2011.12.001

    Article  Google Scholar 

  9. Fujishima A, Zhang X (2006) Titanium dioxide photocatalysis: present situation and future approaches. C R Chim 9:750–760. https://doi.org/10.1016/j.crci.2005.02.055

    Article  Google Scholar 

  10. Maranhão FL (2009) Método para Redução de Mancha nas Vedações Externas de Edifícios. PhD Thesis, Universidade de São Paulo

  11. Riaz S, Park SJ (2020) An overview of TiO2-based photocatalytic membrane reactors for water and wastewater treatments. J Ind Eng Chem 84:23–41. https://doi.org/10.1016/j.jiec.2019.12.021

    Article  Google Scholar 

  12. Cassar L (2004) Photocatalysis of cementitious materials: clean buildings and clean air. MRS Bull 29:328–331. https://doi.org/10.1557/mrs2004.99

    Article  Google Scholar 

  13. Zahabizadeh B, Rocha Segundo I, Pereira J et al (2023) Photocatalysis of functionalised 3D printed cementitious materials. J Build Eng 70:106373. https://doi.org/10.1016/j.jobe.2023.106373

    Article  Google Scholar 

  14. Diamanti MV, Ormellese M, Pedeferri MP (2008) Characterization of photocatalytic and superhydrophilic properties of mortars containing titanium dioxide. Cem Concr Res 38:1349–1353. https://doi.org/10.1016/j.cemconres.2008.07.003

    Article  Google Scholar 

  15. Austria GC (2015) Argamassa autolimpante para revestimento de fachadas: o efeito das propriedades fotocatalíticas do dióxido de titânio (TiO2). MsC Dissertation, Universidade Federal do Rio Grande do Sul

  16. Treviso JPM (2016) Avaliação da eficiência de autolimpeza em argamassas e pastas contendo TiO2 expostas ao microclima urbano. MsC Dissertation, Universidade Federal do Rio Grande do Sul

  17. De la Rosa JM, Miller AZ, Pozo-Antonio JS et al (2017) Assessing the effects of UVA photocatalysis on soot-coated TiO2-containing mortars. Sci Total Environ 605–606:147–157. https://doi.org/10.1016/j.scitotenv.2017.06.127

    Article  Google Scholar 

  18. Casarin RP (2019) Análise da eficiência da ação autolimpante em diferentes tipos de acabamentos superficiais de argamassas com adição de TiO2. MsC Dissertation, Universidade Federal do Rio Grande do Sul

  19. Piovesan AZ (2009) Estudo sobre a Influência da Adição de Pigmentos em Propriedades de Durabilidade e na Cromaticidade do Concreto de Cimento Portland Branco. MsC Dissertation, Universidade Federal do Rio Grande do Sul

  20. Hatami L, Jamshidi M (2021) Effects of type and duration of pigment milling on mechanical and colorimetric properties of colored self compacting mortars (CSCM). J Build Eng 35:102006. https://doi.org/10.1016/j.jobe.2020.102006

    Article  Google Scholar 

  21. Wang Z, Liu Y, Huang B et al (2014) Progress on extending the light absorption spectra of photocatalysts. Phys Chem Chem Phys 16:2758–2774. https://doi.org/10.1039/C3CP53817F

    Article  Google Scholar 

  22. Diamanti MV, Del Curto B, Ormellese M, Pedeferri MP (2013) Photocatalytic and self-cleaning activity of colored mortars containing TiO2. Constr Build Mater 46:167–174. https://doi.org/10.1016/j.conbuildmat.2013.04.038

    Article  Google Scholar 

  23. Laplaza A, Jimenez-Relinque E, Campos J, Castellote M (2017) Photocatalytic behavior of colored mortars containing TiO2 and iron oxide based pigments. Constr Build Mater 144:300–310. https://doi.org/10.1016/j.conbuildmat.2017.03.146

    Article  Google Scholar 

  24. Janczarek M, Klapiszewski Ł, Jędrzejczak P et al (2022) Progress of functionalized TiO2-based nanomaterials in the construction industry: a comprehensive review. Chem Eng J 430:132062. https://doi.org/10.1016/j.cej.2021.132062

    Article  Google Scholar 

  25. Diamanti MV, Luongo N, Massari S et al (2021) Durability of self-cleaning cement-based materials. Constr Build Mater 280:122442. https://doi.org/10.1016/j.conbuildmat.2021.122442

    Article  Google Scholar 

  26. IBP (Fraunhofer Institute for Building Physics) (2023) WUFI® Pro v6.6 (Version 6.6) manual—non commercial

  27. Pereira C, de Brito J, Silvestre JD (2018) Contribution of humidity to the degradation of façade claddings in current buildings. Eng Fail Anal 90:103–115. https://doi.org/10.1016/j.engfailanal.2018.03.028

    Article  Google Scholar 

  28. Maaroufi M, Belarbi R, Abahri K, Benmahiddine F (2021) Full characterization of hygrothermal, mechanical and morphological properties of a recycled expanded polystyrene-based mortar. Constr Build Mater 301:124310. https://doi.org/10.1016/j.conbuildmat.2021.124310

    Article  Google Scholar 

  29. Krishnan P, Zhang MH, Yu L, Feng H (2013) Photocatalytic degradation of particulate pollutants and self-cleaning performance of TiO2-containing silicate coating and mortar. Constr Build Mater 44:309–316. https://doi.org/10.1016/j.conbuildmat.2013.03.009

    Article  Google Scholar 

  30. American Society for Testing and Materials (2021) ASTM C150/C150M—21: standard specification for Portland Cement

  31. Associação Brasileira de Normas Técnicas (2018) ABNT NBR 16697: cimento Portland—Requisitos

  32. Associação Brasileira de Normas Técnicas (2017) ABNT NBR 16605: cimento Portland e outros materiais em pó—Determinação da massa específica

  33. Associação Brasileira de Normas Técnicas (2021) ABNT NBR 16972: agregados—Determinação da massa unitária e do índice de vazios

  34. Associação Brasileira de Normas Técnicas (2019) ABNT NBR 7215: cimento Portland—Determinação da resistência à compressão de corpos de prova cilíndricos

  35. Zanrosso CD (2016) Avaliação da aplicação de ácidos policarboxílicos como ligantes na imobilização de dióxido de titânio em tecidos de algodão. MSc Dissertation, Universidade Federal do Rio Grande do Sul

  36. Guerra FL (2018) Avaliação da eficiência de nanopartículas de TiO2 no controle do crescimento de fungos filamentosos deteriogênicos em argamassas históricas. PhD Thesis, Universidade Federal do Rio Grande do Sul

  37. González-Sánchez JF, Taşcı B, Fernández JM et al (2021) Improvement of the depolluting and self-cleaning abilities of air lime mortars with dispersing admixtures. J Clean Prod 292:126069. https://doi.org/10.1016/j.jclepro.2021.126069

    Article  Google Scholar 

  38. Dantas SRA, de Oliveira Romano RC, Vittorino F, Loh K (2021) Effects of surface roughness and light scattering on the activation of TiO2 on mortar photocatalytic process. Constr Build Mater 270:121421. https://doi.org/10.1016/j.conbuildmat.2020.121421

    Article  Google Scholar 

  39. Lee HS, Lee JY, Yu MY (2005) Influence of inorganic pigments on the fluidity of cement mortars. Cem Concr Res 35:703–710. https://doi.org/10.1016/j.cemconres.2004.06.010

    Article  Google Scholar 

  40. Associação Brasileira de Normas Técnicas (2003) ABNT NBR NM 248: agregados—Determinação da composição granulométrica

  41. Associação Brasileira de Normas Técnicas (2021) ABNT NBR 16916: agregado miúdo—Determinação da densidade e da absorção de água

  42. Associação Brasileira de Normas Técnicas (2019) ABNT NBR 11768–3: aditivos químicos para concreto de cimento Portland. Parte 3: Ensaios de caracterização

  43. Assaad JJ, Nasr D, Chwaifaty S, Tawk T (2020) Parametric study on polymer-modified pigmented cementitious overlays for colored applications. J Build Eng 27:101009. https://doi.org/10.1016/j.jobe.2019.101009

    Article  Google Scholar 

  44. López A, Tobes JM, Giaccio G, Zerbino R (2009) Advantages of mortar-based design for coloured self-compacting concrete. Cem Concr Compos 31:754–761. https://doi.org/10.1016/j.cemconcomp.2009.07.005

    Article  Google Scholar 

  45. Associação Brasileira de Normas Técnicas (2016) ABNT NBR 13276: argamassa para assentamento e revestimento de paredes e tetos—Determinação do índice de consistência

  46. Associação Brasileira de Normas Técnicas (2005) ABNT NBR 13278: argamassa para assentamento e revestimento de paredes e tetos—Determinação da densidade de massa e do teor de ar incorporado

  47. Associação Brasileira de Normas Técnicas (2005) ABNT NBR 13280: argamassa para assentamento e revestimento de paredes e tetos—Determinação da densidade de massa aparente no estado endurecido

  48. Associação Brasileira de Normas Técnicas (2008) ABNT NBR 15630: argamassa para assentamento e revestimento de paredes e tetos—Determinação do módulo de elasticidade dinâmico através da propagação de onda ultra-sônico

  49. Associação Brasileira de Normas Técnicas (2005) ABNT NBR 13279: argamassa para assentamento e revestimento de paredes e tetos—Determinação da resistência à tração na flexão e à compressão

  50. Associação Brasileira de Normas Técnicas (2005) ABNT NBR 15259: argamassa para assentamento e revestimento de paredes e tetos—Determinação da absorção de água por capilaridade e do coeficiente de capilaridade

  51. American Society for Testing and Materials (2016) ASTM E96/E96M—16: standard test method for water vapor transmission of materials

  52. ASTM International (2005) ASTM G155—05a: standard practice for operating xenon arc light apparatus for exposure of non-metallic materials

  53. ASTM International (2019) ASTM G151—19: standard practice for exposing nonmetallic materials in accelerated test devices that use laboratory light sources

  54. ASTM International (2019) ASTM C1501—19: standard test method for color stability of building construction sealants as determined by laboratory accelerated weathering procedures

  55. Łaźniewska-Piekarczyk B, Szwabowski J (2012) The influence of the type of anti-foaming admixture and superplasticizer on the properties of self-compacting mortar and concrete. J Civ Eng Manag 18:408–415. https://doi.org/10.3846/13923730.2012.698908

    Article  Google Scholar 

  56. Lin X, Pang H, Wei D et al (2021) Effect of superplasticizers with different anchor groups on the properties of cementitious systems. Colloids Surf A Physicochem Eng Asp 630:127207. https://doi.org/10.1016/j.colsurfa.2021.127207

    Article  Google Scholar 

  57. Dantas SRA, Serafini R, de Oliveira Romano RC et al (2019) Influence of the nano TiO2 dispersion procedure on fresh and hardened rendering mortar properties. Constr Build Mater 215:544–556. https://doi.org/10.1016/j.conbuildmat.2019.04.190

    Article  Google Scholar 

  58. Moro C, El Fil H, Francioso V, Velay-Lizancos M (2021) Influence of water-to-binder ratio on the optimum percentage of nano-TiO2 addition in terms of compressive strength of mortars: a laboratory and virtual experimental study based on ANN model. Constr Build Mater 267:120960. https://doi.org/10.1016/j.conbuildmat.2020.120960

    Article  Google Scholar 

  59. Zhao A, Yang J, Yang EH (2015) Self-cleaning engineered cementitious composites. Cem Concr Compos 64:74–83. https://doi.org/10.1016/j.cemconcomp.2015.09.007

    Article  Google Scholar 

  60. Rao S, Silva P, De Brito J (2015) Experimental study of the mechanical properties and durability of self-compacting mortars with nano materials (SiO2 and TiO2). Constr Build Mater 96:508–517. https://doi.org/10.1016/j.conbuildmat.2015.08.049

    Article  Google Scholar 

  61. Ren J, Lai Y, Gao J (2018) Exploring the influence of SiO2 and TiO2 nanoparticles on the mechanical properties of concrete. Constr Build Mater 175:277–285. https://doi.org/10.1016/j.conbuildmat.2018.04.181

    Article  Google Scholar 

  62. Kim S, Seo J, Yoon HN, Lee HK (2022) Exploration of effects of CO2 exposure on the NOx-removal performance of TiO2-incorporated Portland cement evaluated via microstructural and morphological investigation. J Build Eng 45:103609. https://doi.org/10.1016/j.jobe.2021.103609

    Article  Google Scholar 

  63. Isaia GC, Gastaldini ALG, Moraes R (2003) Physical and pozzolanic action of mineral additions on the mechanical strength of high-performance concrete. Cem Concr Compos 25:69–76. https://doi.org/10.1016/S0958-9465(01)00057-9

    Article  Google Scholar 

  64. Lawrence P, Cyr M, Ringot E (2003) Mineral admixtures in mortars: effect of inert materials on short-term hydration. Cem Concr Res 33:1939–1947. https://doi.org/10.1016/S0008-8846(03)00183-2

    Article  Google Scholar 

  65. Kumar R, Bhattacharjee B (2003) Porosity, pore size distribution and in situ strength of concrete. Cem Concr Res 33:155–164. https://doi.org/10.1016/S0008-8846(02)00942-0

    Article  Google Scholar 

  66. Salomão MC, Bauer E, Kazmierczak C (2018) Drying parameters of rendering mortars. Ambiente Construído 18:7–19. https://doi.org/10.1590/s1678-86212018000200239

    Article  Google Scholar 

  67. European Committee for Standardization (2001) EN ISO 12572: building materials: determination of water vapor transmission properties

  68. Cincotto MA, Helene P (1994) Aglomerantes Hidráulicos. In: Mehta P, Monteiro P (eds) Concreto: Estrutura, propriedades e materiais. São Paulo, pp 187–238

  69. Posani M, Veiga MDR, de Freitas VP (2021) Towards resilience and sustainability for historic buildings: a review of envelope retrofit possibilities and a discussion on hygric compatibility of thermal insulations. Int J Archit Herit 15:807–823. https://doi.org/10.1080/15583058.2019.1650133

    Article  Google Scholar 

  70. Veiga MRS (1998) Comportamento de argamassas de revestimento de paredes. Contribuição para o estudo da sua resistência à fendilhação. PhD Thesis, Faculdade de Engenharia da Universidade do Porto

  71. Parracha JL, Borsoi G, Veiga R et al (2022) Durability assessment of external thermal insulation composite systems in urban and maritime environments. Sci Total Environ 849:157828. https://doi.org/10.1016/j.scitotenv.2022.157828

    Article  Google Scholar 

  72. Salomão MCF (2016) Estudo da estrutura das argamassas de revestimento e sua influência nas propriedades de transporte de água. PhD Thesis, Universidade de Brasília

  73. Veiga R, Faria P, van Hees R et al (2023) RILEM TC 277-LHS report: properties of lime-based renders and plasters—discussion of current test methods and proposals for improvement. Mater Struct 56:70. https://doi.org/10.1617/s11527-023-02141-9

    Article  Google Scholar 

  74. Yurtdas I, Leklou N (2021) Effect of re-saturation after drying on hydric and strength behaviour of mortar. Mater Struct 54:186. https://doi.org/10.1617/s11527-021-01780-0

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior), grant number 88887.702359/2022-00, and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico). The authors would like to thank LAMTAC (Laboratório de Materiais e Tecnologia do Ambiente Construído), LACER (Laboratório de Materiais Cerâmicos), LINCE (Laboratório de Inovação em Cimentos Ecoeficientes), PPGCI (Programa de Pós-Graduação em Engenharia Civil: Construção e Infraestrutura), and UFRGS (Universidade Federal do Rio Grande do Sul).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jéssica Deise Bersch.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 48 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bersch, J.D., Masuero, A.B. & Dal Molin, D.C.C. Photocatalytic coloured rendering mortars: effect of TiO2 and iron oxide pigments on the physical, mechanical, hygric, and photoactive behaviour. Mater Struct 56, 146 (2023). https://doi.org/10.1617/s11527-023-02240-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-023-02240-7

Keywords

Navigation