Skip to main content
Log in

Batch design of cementitious composites for the double-K fracture model

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The concrete mixture design has been commonly conducted based on the compressive strength in concrete technology. Nevertheless, once a crack occurs in a structure, it can only be modeled realistically with the criteria of fracture mechanics. This investigation aims to accomplish some relationships between the fresh concrete properties such as the water/cement (w/c) ratio and the hardened concrete properties such as unstable fracture toughness and initiation fracture toughness. Therefore, twenty-two series of splitting square prismatic and wedge splitting (WS) specimens, with different w/c ratios and with two different maximum aggregate sizes (8 mm and 16 mm) were cast in this study. The two-parameter model (TPM) and the double-K model were used to simulate the results of the fracture toughness test. Subsequently, five mixtures with 20 mm crushed aggregate in the literature, which were previously analyzed according to the TPM for different w/c ratios, were modeled according to the double-K model in the current study. Consequently, two monograms combining the relationships between quantities of fresh concrete components and the aforementioned fracture toughness parameters were presented for concrete mixture design. Furthermore, a reliable approach based on the TPM was proposed for the WS test to determine unstable fracture toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hillerborg A, Modéer M, Petersson P-E (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6:773–781. https://doi.org/10.1016/0008-8846(76)90007-7

    Article  Google Scholar 

  2. Bažant ZP, Oh BH (1983) Crack band theory for fracture of concrete. Matériaux Constr 16:155–177. https://doi.org/10.1007/BF02486267

    Article  Google Scholar 

  3. Jenq Y, Shah SP (1985) Two parameter fracture model for concrete. J Eng Mech 111:1227–1241. https://doi.org/10.1061/(ASCE)0733-9399(1985)111:10(1227)

    Article  Google Scholar 

  4. Nallathambi P, Karihaloo BL (1986) Determination of specimen-size independent fracture toughness of plain concrete. Mag Concr Res 38:67–76. https://doi.org/10.1680/macr.1986.38.135.67

    Article  Google Scholar 

  5. Carpinteri A (1989) Cusp catastrophe interpretation of fracture instability. J Mech Phys Solids 37:567–582. https://doi.org/10.1016/0022-5096(89)90029-X

    Article  MATH  Google Scholar 

  6. Bažant ZP, Kazemi MT (1990) Determination of fracture energy, process zone longth and brittleness number from size effect, with application to rock and conerete. Int J Fract 44:111–131. https://doi.org/10.1007/BF00047063

    Article  Google Scholar 

  7. Xu S, Reinhardt HW (1999) Determination of double-K criterion for crack propagation in quasi-brittle fracture, Part I: experimental investigation of crack propagation. Int J Fract 98:111–149. https://doi.org/10.1023/A:1018668929989

    Article  Google Scholar 

  8. Hu X, Duan K (2008) Size effect and quasi-brittle fracture: the role of FPZ. Int J Fract 154:3–14. https://doi.org/10.1007/s10704-008-9290-7

    Article  MATH  Google Scholar 

  9. Brühwiler E, Wittmann FH (1990) The wedge splitting test, a new method of performing stable fracture mechanics tests. Eng Fract Mech 35:117–125. https://doi.org/10.1016/0013-7944(90)90189-N

    Article  Google Scholar 

  10. Sabir BB, Asili M (1996) Stress analysis of a fracture test specimen for cementitious materials. Cem Concr Compos 18:141–151. https://doi.org/10.1016/0958-9465(96)00011-X

    Article  Google Scholar 

  11. Ince R (2021) Usage of compact compression specimens to determine non-linear fracture parameters of concrete. Fatigue Fract Eng Mater Struct 44:410–426. https://doi.org/10.1111/ffe.13368

    Article  Google Scholar 

  12. Ince R (2021) Utilization of splitting strips in fracture mechanics tests of quasi-brittle materials. Arch Appl Mech 91:2661–2679. https://doi.org/10.1007/s00419-021-01913-5

    Article  Google Scholar 

  13. Xu S, Li Q, Wu Y et al (2021) RILEM standard: testing methods for determination of the double-K criterion for crack propagation in concrete using wedge-splitting tests and three-point bending beam tests, recommendation of RILEM TC265-TDK. Mater Struct 54:220. https://doi.org/10.1617/s11527-021-01786-8

    Article  Google Scholar 

  14. Xu S, Li Q, Wu Y et al (2021) Influential factors for double-K fracture parameters analyzed by the round robin tests of RILEM TC265-TDK. Mater Struct 54:227. https://doi.org/10.1617/s11527-021-01791-x

    Article  Google Scholar 

  15. Rong H, Dong W, Zhang X, Zhang B (2019) Size effect on fracture properties of concrete after sustained loading. Mater Struct 52:16. https://doi.org/10.1617/s11527-019-1326-0

    Article  Google Scholar 

  16. Tang T, Ouyang C, Shah SP (1996) Simple method for determining material fracture parameters from peak loads. ACI Mater J 93:147–157. https://doi.org/10.14359/1413

    Article  Google Scholar 

  17. Yang S, Tang T, Zollinger DG, Gurjar A (1997) Splitting tension tests to determine concrete fracture parameters by peak-load method. Adv Cem Based Mater 5:18–28. https://doi.org/10.1016/S1065-7355(97)90011-0

    Article  Google Scholar 

  18. Yang S, Tang T (1998) A systematic method to determine optimal specimen geometry for measuring concrete fracture properties by the peak-load method. Cem Concr Aggregates 20:278. https://doi.org/10.1520/CCA10422J

    Article  Google Scholar 

  19. Rocco C, Guinea GV, Planas J, Elices M (1999) Size effect and boundary conditions in the brazilian test: theoretical analysis. Mater Struct 32:437–444. https://doi.org/10.1007/BF02482715

    Article  Google Scholar 

  20. Ince R (2010) Determination of concrete fracture parameters based on two-parameter and size effect models using split-tension cubes. Eng Fract Mech 77:2233–2250. https://doi.org/10.1016/j.engfracmech.2010.05.007

    Article  Google Scholar 

  21. Ince R (2012) Determination of concrete fracture parameters based on peak-load method with diagonal split-tension cubes. Eng Fract Mech 82:100–114. https://doi.org/10.1016/j.engfracmech.2011.11.026

    Article  Google Scholar 

  22. Ince R (2012) Determination of the fracture parameters of the Double-K model using weight functions of split-tension specimens. Eng Fract Mech 96:416–432. https://doi.org/10.1016/j.engfracmech.2012.08.024

    Article  Google Scholar 

  23. Abrams DA (1918) Design of concrete mixtures. Lewis Inst Bull 1:1–20

    Google Scholar 

  24. Li Z (2011) Advanced concrete technology. Wiley

    Book  Google Scholar 

  25. Ghimire A, Noor-E-Khuda S, Ullah SN, Suntharavadivel T (2022) Determination of Mohr-Coulomb failure envelope, mechanical properties and UPV of commercial cement-lime mortar. Mater Struct 55:111. https://doi.org/10.1617/s11527-022-01959-z

    Article  Google Scholar 

  26. Monteiro PJM, Helene PRL, Kang SH (1993) Designing concrete mixtures for strength, elastic modulus and fracture energy. Mater Struct 26:443–452. https://doi.org/10.1007/BF02472804

    Article  Google Scholar 

  27. Ince R, Alyamaç KE (2008) Determination of fracture parameters of concrete based on water-cement ratio. Indian J Eng Mater Sci 15:14–22

    Google Scholar 

  28. Beygi MHA, Kazemi MT, Nikbin IM, Amiri JV (2013) The effect of water to cement ratio on fracture parameters and brittleness of self-compacting concrete. Mater Des 50:267–276. https://doi.org/10.1016/j.matdes.2013.02.018

    Article  Google Scholar 

  29. Ince R, Bildik AT (2021) A preliminary concrete mixture design based on fracture toughness. Mater Struct 54:11. https://doi.org/10.1617/s11527-020-01604-7

    Article  Google Scholar 

  30. Emadi AA, Modarres A (2022) The impact of water to cement ratio on the fracture behavior of rubberized concrete. Constr Build Mater 315:125754. https://doi.org/10.1016/j.conbuildmat.2021.125754

    Article  Google Scholar 

  31. Karihaloo BL, Nallathambi P (1991) Notched beam test: mode I fracture toughness. In: Shah SP, Carpinteri A (eds) Fracture mechanics test methods for concrete. CRC Press, pp 1–86

    Google Scholar 

  32. Shah SP (1990) Determination of fracture parameters (K Ic s and CTODc) of plain concrete using three-point bend tests. Mater Struct 23:457–460. https://doi.org/10.1007/BF02472029

    Article  Google Scholar 

  33. Bažant ZP (1994) Discussion of “ fracture mechanics and size effect of concrete in tension ” by Tianxi Tang, Surendra P. Shah, and Chengsheng Ouyang (November, 1992, Vol. 118, No. 11). J Struct Eng 120:2555–2558. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:8(2555)

    Article  Google Scholar 

  34. Ince R, Fenerli C (2022) Determination of tensile strength of cementitious composites using fracture parameters of two-parameter model for concrete fracture. Constr Build Mater 344:128222. https://doi.org/10.1016/j.conbuildmat.2022.128222

    Article  Google Scholar 

  35. Xu S, Reinhardt HW (1999) Determination of double-K criterion for crack propagation in quasi-brittle fracture, Part II: analytical evaluating and practical measuring methods for three-point bending notched beams. Int J Fract 98:151–177. https://doi.org/10.1023/A:1018740728458

    Article  Google Scholar 

  36. Xu S, Reinhardt WH, Wu Z, Zhao Y (2003) Comparison between the double-K fracture model and the two parameter fracture model. Otto-Graf-Journal 14:131–157

    Google Scholar 

  37. Barr BIG, Evans WT, Dowers RC (1981) Fracture toughness of polypropylene fibre concrete. Int J Cem Compos Light Concr 3:115–122. https://doi.org/10.1016/0262-5075(81)90005-1

    Article  Google Scholar 

  38. Tang T (1994) Effects of load-distributed width on split tension of unnotched and notched cylindrical specimens. J Test Eval 22:401. https://doi.org/10.1520/JTE12656J

    Article  Google Scholar 

  39. Guinea GV, Elices M, Planas J (1996) Stress intensity factors for wedge-splitting geometry. Int J Fract 81:113–124. https://doi.org/10.1007/BF00033177

    Article  Google Scholar 

  40. Saxena A, Hudak SJ (1978) Review and extension of compliance information for common crack growth specimens. Int J Fract 14:453–468. https://doi.org/10.1007/BF01390468

    Article  Google Scholar 

  41. Bažant ZP, Becq-Giraudon E (2002) Statistical prediction of fracture parameters of concrete and implications for choice of testing standard. Cem Concr Res 32:529–556. https://doi.org/10.1016/S0008-8846(01)00723-2

    Article  Google Scholar 

  42. Ince R (2004) Prediction of fracture parameters of concrete by artificial neural networks. Eng Fract Mech 71:2143–2159. https://doi.org/10.1016/j.engfracmech.2003.12.004

    Article  Google Scholar 

  43. Ince R (2010) Artificial neural network-based analysis of effective crack model in concrete fracture. Fatigue Fract Eng Mater Struct 33:595–606. https://doi.org/10.1111/j.1460-2695.2010.01469.x

    Article  Google Scholar 

  44. Ince R, Çetin SY (2019) Effect of grading type of aggregate on fracture parameters of concrete. Mag Concr Res 71:860–868. https://doi.org/10.1680/jmacr.18.00095

    Article  Google Scholar 

  45. Ince R, Fenerli C (2021) Residual strength prediction based on size effect of cracked concrete members. Mag Concr Res 1–10. https://doi.org/10.1680/jmacr.21.00018

  46. L’Hermite R (1955) Idées actuelles sur la technologie du béton. Documentation technique du bâtiment et des travaux publics

  47. Kumar S, Barai SV (2010) Determining the double-K fracture parameters for three-point bending notched concrete beams using weight function. Fatigue Fract Eng Mater Struct 33:645–660. https://doi.org/10.1111/j.1460-2695.2010.01477.x

    Article  Google Scholar 

  48. AC, (2014) ACI-318: Building code requirements for structural concrete and commentary for structural concrete. Farmington Hills, American concrete institute, Michigan

    Google Scholar 

  49. Walpole RE, Myers RH, Myers SL, Ye K (2012) Probability & statistics for engineers & scientists, 9th edn. Prentice Hall, Boston

    MATH  Google Scholar 

  50. Alyamaç KE, Ince R (2009) A preliminary concrete mix design for SCC with marble powders. Constr Build Mater 23:1201–1210. https://doi.org/10.1016/j.conbuildmat.2008.08.012

    Article  Google Scholar 

  51. Lyse I (1932) Tests on consistency and strength of concrete having constant water content. Proc ASTM 32:1–13

    Google Scholar 

  52. Zhu L, Zhao C, Dai J (2021) Prediction of compressive strength of recycled aggregate concrete based on gray correlation analysis. Constr Build Mater 273:121750. https://doi.org/10.1016/j.conbuildmat.2020.121750

    Article  Google Scholar 

  53. van Mier JGM (1997) Fracture processes of concrete: assessment of material parameters for fracture models. CRC Press, Boca Raton, FL

    Google Scholar 

  54. Shah SP, Swartz SE, Ouyang C (1995) Fracture mechanics of concrete: applications of fracture mechanics to concrete, rock and other quasi-brittle materials. John Wiley & Sons, Canada

    Google Scholar 

  55. Masoud MA, Rashad AM, Sakr K et al (2020) Possibility of using different types of Egyptian serpentine as fine and coarse aggregates for concrete production. Mater Struct 53:87. https://doi.org/10.1617/s11527-020-01525-5

    Article  Google Scholar 

  56. Stephen SJ, Gettu R (2020) Fatigue fracture of fibre reinforced concrete in flexure. Mater Struct 53:56. https://doi.org/10.1617/s11527-020-01488-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ragip Ince.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ince, R., Bildik, A.T. Batch design of cementitious composites for the double-K fracture model. Mater Struct 56, 145 (2023). https://doi.org/10.1617/s11527-023-02238-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-023-02238-1

Keywords

Navigation