Skip to main content
Log in

Effects of premixed Cl on performance of calcium sulphoaluminate cement: mechanism of anti-chloride penetration

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Calcium sulphoaluminate cement (CSA) has excellent anti-chloride penetration performance; therefore, a straight substitution of CSA for Portland cement to conduct marine engineering construction will significantly reduce the adverse effects of chloride ions (Cl) on marine resource utilisation. Recent studies have focused on the chloride binding capacity, but relatively few investigations have examined the effects of Cl on CSA. In this study, the effects of premixed Cl on CSA properties were studied by setting time, hydration heat, linear shrinkage, and compressive strength. In addition, the mechanism of the chloride binding ability of CSA was analysed and explained using automatic potentiometric titration, X-ray diffraction, thermogravimetric analysis, and mercury intrusion porosimetry. The results showed that Cl reduces the setting time and accelerates the hydration process of CSA cement. Cl can improve the internal pore structure of materials at a water/binder ratio (w/b) of 0.5. The excellent chloride binding ability of CSA, owing to the formation of Kuzel’s salts or Friedel’s salts, was interpreted by the binding of Cl and the synthesised hydration product, i.e., monosulphoaluminate (AFm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chen J, Jiang Y, Chen J (2016) Study on the curing behavior of chloride ion in sea sand concrete. In: 2016 International forum on energy, environment and sustainable development. Atlantis Press, pp 301–306. https://doi.org/10.2991/ifeesd-16.2016.52

  2. Sun W, Jiang Y, Liu JZ (2014) Analysing the micro structure of sea sand concrete. AMM 584–586:1076–1080. https://doi.org/10.4028/www.scientific.net/amm.584-586.1076

    Article  Google Scholar 

  3. Yin S, Liu Z, Dong P (2022) Study on degradation of mechanical properties of BFRP bars wrapped with seawater sea sand concrete under chloride dry wet cycle. Constr Build Mater 352:129050. https://doi.org/10.1016/j.conbuildmat.2022.129050

    Article  Google Scholar 

  4. Shi ZG, Geiker MR, Lothenbach B, Weerdt KD, Garzón SF, Enemark-Rasmussen K, Skibsted J (2017) Friedel’s salt profiles from thermogravimetric analysis and thermodynamic modelling of Portland cement-based mortars exposed to sodium chloride solution. Cem Concr Compos 78:73–83. https://doi.org/10.1016/j.cemconcomp.2017.01.002

    Article  Google Scholar 

  5. Loser R, Lothenbach B, Leemann A, Tuchschmid M (2010) Chloride resistance of concrete and its binding capacity - Comparison between experimental results and thermodynamic modeling. Cem Concr Compos 32(1):34–42. https://doi.org/10.1016/j.cemconcomp.2009.08.001

    Article  Google Scholar 

  6. Jones MR, Dhir RK, Magee BJ (1997) Concrete containing ternary blended binders: resistance to chloride ingress and carbonation. Cem Concr Res 27(6):825–831. https://doi.org/10.1016/S0008-8846(97)00075-6

    Article  Google Scholar 

  7. Bi H, Zhang W, Xu X, Ming A, Shen Y, Wang S, Cheng X (2021) Chloride binding and transport characteristic of phosphoaluminate cement-based marine sand coating subjected to marine environment. Constr Build Mater 281:122505. https://doi.org/10.1016/j.conbuildmat.2021.122505

    Article  Google Scholar 

  8. Li S, Jin Z, Yu Y (2021) Chloride binding by calcined layered double hydroxides and alumina-rich cementitious materials in mortar mixed with seawater and sea sand. Constr Build Mater 293:123493. https://doi.org/10.1016/j.conbuildmat.2021.123493

    Article  Google Scholar 

  9. Liu W, Li Y, Tang L, Xing F (2021) Modelling analysis of chloride redistribution in sea-sand concrete exposed to atmospheric environment. Constr Build Mater 274:121962. https://doi.org/10.1016/j.conbuildmat.2020.121962

    Article  Google Scholar 

  10. Pardal XL, Pochard I, Nonat A (2009) Experimental study of Si–Al substitution in calcium-silicate-hydrate (C-S-H) prepared under equilibrium conditions. Cem Concr Res 39(8):637–643. https://doi.org/10.1016/j.cemconres.2009.05.001

    Article  Google Scholar 

  11. Plusquellec G, Nonat A (2016) Interactions between calcium silicate hydrate (C-S-H) and calcium chloride, bromide and nitrate. Cem Concr Res 90:89–96. https://doi.org/10.1016/j.cemconres.2016.08.002

    Article  Google Scholar 

  12. Shi ZG, Geiker MR, Weerdt KD, Østnor TA, Lothenbach B, Winnefeld F, Skibsted J (2017) Role of calcium on chloride binding in hydrated Portland cement–metakaolin–limestone blends. Cem Concr Res 95:205–216. https://doi.org/10.1016/j.cemconres.2017.02.003

    Article  Google Scholar 

  13. Glasser FP, Zhang L (2001) High-performance cement matrices based on calcium sulfoaluminate–belite compositions. Cem Concr Res 31(12):1881–1886. https://doi.org/10.1016/S0008-8846(01)00649-4

    Article  Google Scholar 

  14. Yuan Q, Shi CJ, Schutter GD, Audenaert K, Deng DH (2009) Chloride binding of cement-based materials subjected to external chloride environment—a review. Constr Build Mater 23(1):1–13. https://doi.org/10.1016/j.conbuildmat.2008.02.004

    Article  Google Scholar 

  15. Renaudin G, Kubel F, Rivera JP, Francois M (1999) Structural phase transition and high temperature phase structure of Friedels salt, 3CaO·Al2O3·CaCl2·10H2O. Cem Concr Res 29(12):1937–1942. https://doi.org/10.1016/S0008-8846(99)00199-4

    Article  Google Scholar 

  16. Birnin-Yauri UA, Glasser FP (1998) Friedel’s salt, Ca2Al(OH)6(Cl, OH)·2H2O: its solid solutions and their role in chloride binding. Cem Concr Res 28(12):1713–1723. https://doi.org/10.1016/S0008-8846(98)00162-8

    Article  Google Scholar 

  17. Péra J, Ambroise J (2004) New applications of calcium sulfoaluminate cement. Cem Concr Res 34(4):671–676. https://doi.org/10.1016/j.cemconres.2003.10.019

    Article  Google Scholar 

  18. Kalogridis D, Ch KG, Ftikos Ch, Malami Ch (2000) A quantitative study of the influence of non-expansive sulfoaluminate cement on the corrosion of steel reinforcement. Cem Concr Res 30(11):1731–1740. https://doi.org/10.1016/S0008-8846(00)00277-5

    Article  Google Scholar 

  19. Berger S, Coumes CCD, Bescop PL, Damidot D (2011) Stabilization of ZnCl2-containing wastes using calcium sulfoaluminate cement: cement hydration, strength development and volume stability. J Hazard Mater 194(5):256–267. https://doi.org/10.1016/j.jhazmat.2011.07.095

    Article  Google Scholar 

  20. Mesbah A, Cau-dit-Coumes C, Renaudin G, Frizon F, Leroux F (2012) Uptake of chloride and carbonate ions by calcium monosulfoaluminate hydrate. Cem Concr Res 42(8):1157–1165. https://doi.org/10.1016/j.cemconres.2012.05.012

    Article  Google Scholar 

  21. Sharp ZD, Barnes JD (2004) Water-soluble chlorides in massive seafloor serpentinites: a source of chloride in subduction zones. Earth Planet Sci Lett 226(1–2):243–254. https://doi.org/10.1016/j.epsl.2004.06.016

    Article  Google Scholar 

  22. Younis A, Ebead U, Suraneni P, Nanni A (2018) Fresh and hardened properties of seawater-mixed concrete. Constr Build Mater 190:276–286. https://doi.org/10.1016/j.conbuildmat.2018.09.126

    Article  Google Scholar 

  23. Ann KY, Cho CG (2014) Corrosion resistance of calcium aluminate cement concrete exposed to a chloride environment. Materials 7(2):887–898. https://doi.org/10.3390/ma7020887

    Article  Google Scholar 

  24. Florea MVA, Brouwers HJH (2012) Chloride binding related to hydration products: part I: ordinary portland cement. Cem Concr Res 42(2):282–290. https://doi.org/10.1016/j.cemconres.2011.09.016

    Article  Google Scholar 

  25. A.S.T.M. Standard, C191 (2021) Standard test methods for time of setting of hydraulic cement by Vicat Needle. ASTM International, West Conshohocken

    Google Scholar 

  26. Wadsö L (2005) Applications of an eight-channel isothermal conduction calorimeter for cement hydration studies. Cem Int 5:94–101

    Google Scholar 

  27. BS EN 196-1 (2005) Methods of testing cement.

  28. Castellote M, Andrade C (2001) Round-Robin test on chloride analysis in concrete—part I: analysis of total chloride content. Mater Struct 34(9):532–549. https://doi.org/10.1007/BF02482181

    Article  Google Scholar 

  29. Castellote M, Andrade C (2001) Round-robin test on chloride analysis in concrete—part II: analysis of water-soluble chloride content. Mater Struct 34(10):589–596. https://doi.org/10.1007/BF02482124

    Article  Google Scholar 

  30. Beretka J, Marroccoli M, Sherman N, Valenti GL (1996) The influence of C4A3S content and ratio on the performance of calcium sulfoaluminate-based cements. Cem Concr Res 26(11):1673–1681. https://doi.org/10.1016/S0008-8846(96)00164-0

    Article  Google Scholar 

  31. Yang Z, Ye H, Yuan Q, Li B, Li Y, Zhou D (2021) Factors influencing the hydration, dimensional stability, and strength development of the OPC-CSA-anhydrite ternary system. Mater 14(22):7001. https://doi.org/10.3390/ma14227001

    Article  Google Scholar 

  32. Gallucci E, Zhang X, Scrivener KL (2013) Effect of temperature on the microstructure of calcium silicate hydrate (C-S-H). Cem Concr Res 53:185–195. https://doi.org/10.1016/j.cemconres.2013.06.008

    Article  Google Scholar 

  33. Telesca A, Marroccoli M, Pace ML, Tomasulo M, Valenti GL, Monteiro PJM (2014) A hydration study of various calcium sulfoaluminate cements. Cem Concr Comp 53:224–232. https://doi.org/10.1016/j.cemconcomp.2014.07.002

    Article  Google Scholar 

  34. Ipavec A, Vuk T, Gabrovšek R, Kaučič V (2013) Chloride binding into hydrated blended cements: the influence of limestone and alkalinity. Cem Concr Res 48(2):74–85. https://doi.org/10.1016/j.cemconres.2013.02.010

    Article  Google Scholar 

  35. Rumelhard G (1987) Formation, modification et dissolution du concept d’hormone dans l’enseignement. Aster Recherches en Didactique des Sciences Expérimentales 5(1):143–170. https://doi.org/10.4267/2042/9234

    Article  Google Scholar 

  36. Paul G, Boccaleri E, Buzzi L, Canonico F, Gastaldi D (2015) Friedel’s salt formation in sulfoaluminate cements: a combined XRD and 27Al MAS NMR study. Cem Concr Res 67:93–102. https://doi.org/10.1016/j.cemconres.2014.08.004

    Article  Google Scholar 

  37. Baquerizo LG, Matschei T, Scrivener KL, Saeidpour M, Wadsö L (2015) Hydration states of AFm cement phases. Cem Concr Res 73(24):143–157. https://doi.org/10.1016/j.cemconres.2015.02.011

    Article  Google Scholar 

  38. Wang YC, Jiang XL, Zhong ZH, Liu ZC (2022) Binding mechanism of CSA cement on premixed Cl and its governing parameters. J Mater Civ Eng 34(2):04021429. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004066

    Article  Google Scholar 

  39. Mesbah A, François M, Cau-dit-Coumes C, Frizon F, Filinchuk Y, Leroux F, Ravaux J, Renaudin G (2011) Crystal structure of Kuzel’s salt 3CaO·Al2O3·1/2CaSO4·1/2CaCl2·11H2O determined by synchrotron powder diffraction. Cem Concr Res 41(5):504–509. https://doi.org/10.1016/j.cemconres.2011.01.015

    Article  Google Scholar 

  40. Glasser FP, Kindness A, Stronach SA (1999) Stability and solubility relationships in AFm phases: part I. Chloride, sulfate and hydroxide. Cem Concr Res 29(6):861–866. https://doi.org/10.1016/S0008-8846(99)00055-1

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate the financial support provided by the National Natural Science Foundation of China (Nos. 52078301 and 52178235) and Shenzhen Natural Science Fund (JCYJ20220531101415036 and 20220811100052001). Technical support is acknowledged from Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering (SZU), No. 2020B1212060074.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaocheng Wang.

Ethics declarations

Conflict of interest

No conflict of interest exits in the submission of this manuscript, and manuscript is approved by all authors for publication. I would like to declare on behalf of my co-authors that the work described was original research that has not been published previously, and not under consideration for publication elsewhere, in whole or in part. All the authors listed have approved the manuscript that is enclosed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Jiang, X., Wang, Y. et al. Effects of premixed Cl on performance of calcium sulphoaluminate cement: mechanism of anti-chloride penetration. Mater Struct 56, 127 (2023). https://doi.org/10.1617/s11527-023-02214-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-023-02214-9

Keywords

Navigation