Skip to main content
Log in

Rheological properties and polymer phase structure characterization of SBS/CR composite modified asphalt (CMA) binders

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Crumb rubber (CR) content plays an important role in the rheological properties and polymer phase structure of styrene–butadiene–styrene (SBS) and crumb rubber (CR) composite modified asphalt (SBS/CR CMA) binders. To thoroughly understand the modified mechanisms and microstructures of polymers, the frequency sweep tests were employed to measure the mechanical parameters including dynamic shear modulus, phase angle, and dynamic viscosity within the linear viscoelastic domain, Sessile Drop test was conducted to obtain the contact angles which were used to calculate the surface free energy, and Confocal Laser Scanning Microscopy (CLSM) test was applied to capture the images of polymer phase. According to the time–temperature superposition principle (TTSP), the master curves of dynamic shear modulus, phase angle, and dynamic viscosity were constructed, respectively. Therefore, the mechanical properties, zero shear viscosity (ZSV), and flow activation energy were determined to be analyzed for evaluation of CR content. The addition of the CR modifier improves the ZSV of binders, and SBS/CR-35 owns the largest value of ZSV showing the best flow resistance. What’s more, SBS/CR-35 presents a lower temperature dependence under higher loading frequencies because of the smallest flow activation energy and results in the highest surface free energy (SFE). Among the five binders, SBS/CR-35 exhibits the best mechanical performance. Based on the reconstruction of the polymer phase, the statistical analysis revealed that the majority of SBS particles (50.15%) are formed of 0.3 μm3 in volume size and the majority of CR particles are 2.5 μm3 in all SBS/CR CMA binders. All polymer particles are mainly distributed within the volume range of 0.3 μm3 to 40 μm3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Xiao FP, Zong QD, Wang JG, Chen J, Liu J (2020) Storage stability characterization and improvement of SBS and crumb rubber composite modified asphalt. Road Mater Pavement Des. https://doi.org/10.1080/14680629.2020.1830151

    Article  Google Scholar 

  2. Qian CD, Fan WY, Yang GM, Han L, Xing BD, Lv XB (2020) Influence of crumb rubber particle size and SBS structure on properties of CR/SBS composite modified asphalt. Constr Build Mater 235:5. https://doi.org/10.1016/j.conbuildmat.2019.117517

    Article  Google Scholar 

  3. Milad AA, Ali A, Yusoff N (2020) A review of the utilisation of recycled waste material as an alternative modifier in asphalt mixtures. Civil Eng J 6:42–60

    Article  Google Scholar 

  4. Li D, Leng Z, Zou F, Yu H (2021) Effects of rubber absorption on the aging resistance of hot and warm asphalt rubber binders prepared with waste tire rubber. J Clean Prod 303:84. https://doi.org/10.1016/j.jclepro.2021.127082

    Article  Google Scholar 

  5. Soto FM, Mino GD (2018) Improvements in the mix-design, performance features and rational methodology of rubber modified binders for the thermal evaluation of the railway sub-ballast. Int J Res Sci Manag 5(2):1–19

    Google Scholar 

  6. Soto FM, Mino GD (2018) Volumetric Mix-design optimization of bituminous rubber-mixtures in railway sub-ballast. Int J Eng Sci Res Technol 7(1):483–507. https://doi.org/10.5281/zenodo.1158653

    Article  Google Scholar 

  7. Liu S, Chen XH, Ma YW, Yang J, Cai DG, Yang GT (2019) Modelling and in-situ measurement of dynamic behavior of asphalt supporting layer in slab track system. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2019.116776

    Article  Google Scholar 

  8. Liu S, Chen XH, Yang J, Cai DG, Yang GT (2020) Numerical study and in-situ measurement of temperature features of asphalt supporting layer in slab track system. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2019.117343

    Article  Google Scholar 

  9. Liu S, Yang J, Chen XH, Yang GT, Cai DG (2018) Application of mastic asphalt waterproofing layer in high-speed railway track in cold regions. Appl Sci-Basel. https://doi.org/10.3390/app8050667

    Article  Google Scholar 

  10. Wang H, Liu X, Zhang H, Apostolidis P, Erkens S, Skarpas A (2020) Micromechanical modelling of complex shear modulus of crumb rubber modified bitumen. Mater Des. https://doi.org/10.1016/j.matdes.2019.108467

    Article  Google Scholar 

  11. Ren S, Liu X, Lin P, Wang H, Fan W, Erkens S (2021) The continuous swelling-degradation behaviors and chemo-rheological properties of waste crumb rubber modified bitumen considering the effect of rubber size. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2021.124966

    Article  Google Scholar 

  12. Wang H, Apostolidis P, Zhu J, Liu X, Skarpas A, Erkens S (2021) The role of thermodynamics and kinetics in rubber-bitumen systems: a theoretical overview. Int J Pavement Eng 22(14):1785–1800. https://doi.org/10.1080/10298436.2020.1724289

    Article  Google Scholar 

  13. Wang H, Liu X, Apostolidis P, Erkens S, Scarpas T (2019) Numerical investigation of rubber swelling in bitumen. Constr Build Mater 214:506–515. https://doi.org/10.1016/j.conbuildmat.2019.04.144

    Article  Google Scholar 

  14. Wang H, Zhang H, Liu X, Skarpas A, Erkens S, Leng Z (2021) Micromechanics-based complex modulus prediction of crumb rubber modified bitumen considering interparticle interactions. Road Mater Pavement Des 22:S251–S268. https://doi.org/10.1080/14680629.2021.1899965

    Article  Google Scholar 

  15. Wang H, Liu X, Apostolidis P, Erkens S, Skarpas A (2020) Experimental investigation of rubber swelling in bitumen. Transp Res Rec 2674(2):203–212. https://doi.org/10.1177/0361198120906423

    Article  Google Scholar 

  16. Chen SY, Ge DD, Jin DZ, Zhou XD, Liu CC, Lv ST, You ZP (2020) Investigation of hot mixture asphalt with high ground tire rubber content. J Clean Prod. https://doi.org/10.1016/j.jclepro.2020.124037

    Article  Google Scholar 

  17. Liu H, Luo R (2017) Development of master curve models complying with linear viscoelastic theory for complex moduli of asphalt mixtures with improved accuracy. Constr Build Mater 152:259–268. https://doi.org/10.1016/j.conbuildmat.2017.06.143

    Article  Google Scholar 

  18. Sun Y, Huang B, Chen J, Jia X, Ding Y (2016) Characterizing rheological behavior of asphalt binder over a complete range of pavement service loading frequency and temperature. Constr Build Mater 123:661–672. https://doi.org/10.1016/j.conbuildmat.2016.07.047

    Article  Google Scholar 

  19. Possebon ÉP, Specht LP, Di Benedetto H, Schuster SL, Pereira DdS (2021) Rheological properties, 2S2P1D modelling and SHStS transformation of 12 Brazilian bitumens and mixtures. Road Mater Pavement Des 2:1–18. https://doi.org/10.1080/14680629.2021.2010589

    Article  Google Scholar 

  20. Zeiada W, Liu H, Al-Khateeb GG, Shanableh A, Samarai M (2022) Evaluation of test methods for measurement of zero shear viscosity (ZSV) of asphalt binders. Constr Build Mater 325:87. https://doi.org/10.1016/j.conbuildmat.2022.126794

    Article  Google Scholar 

  21. Singh D, Mishra V, Girimath SB, Das AK, Rajan B (2019) Evaluation of rheological and moisture damage properties of crumb rubber-modified asphalt binder. Adv Civil Eng Mater 8(1):477–496. https://doi.org/10.1520/acem20190045

    Article  Google Scholar 

  22. Zhu J, Birgisson B, Kringos N (2014) Polymer modification of bitumen: advances and challenges. Eur Polymer J 54(1):18–38

    Article  Google Scholar 

  23. Blom J, Soenen H, Van den Brande N, Van den Bergh W (2021) New evidence on the origin of “bee structures” on bitumen and oils, by atomic force microscopy (AFM) and confocal laser scanning microscopy (CLSM). Fuel. https://doi.org/10.1016/j.fuel.2021.121265

    Article  Google Scholar 

  24. Mirwald J, Hofko B, Pipintakos G, Blom J, Soenen H (2022) Comparison of microscopic techniques to study the diversity of the bitumen microstructure. Micron. https://doi.org/10.1016/j.micron.2022.103294

    Article  Google Scholar 

  25. Pipintakos G, Hasheminejad N, Lommaert C, Bocharova A, Blom J (2021) Application of Atomic Force (AFM), Environmental Scanning Electron (ESEM) and Confocal Laser Scanning Microscopy (CLSM) in bitumen: a review of the ageing effect. Micron. https://doi.org/10.1016/j.micron.2021.103083

    Article  Google Scholar 

  26. Jiang Y, Liu Y, Gong J, Li C, Xi Z, Cai J, Xie H (2018) Microstructures, thermal and mechanical properties of epoxy asphalt binder modified by SBS containing various styrene-butadiene structures. Mater Struct. https://doi.org/10.1617/s11527-018-1217-9

    Article  Google Scholar 

  27. Elseifi MA, Salari S, Mohammad LN, Hassan M, Daly WH, Dessouky S (2012) New approach to recycling asphalt shingles in hot-mix asphalt. J Mater Civ Eng 24(11):1403–1411. https://doi.org/10.1061/(asce)mt.1943-5533.0000520

    Article  Google Scholar 

  28. Handle F, Fuessl J, Neudl S, Grossegger D, Eberhardsteiner L, Hofko B, Hospodka M, Blab R, Grothe H (2016) The bitumen microstructure: a fluorescent approach. Mater Struct 49(1–2):167–180. https://doi.org/10.1617/s11527-014-0484-3

    Article  Google Scholar 

  29. Liu Y, Zhang J, Chen R, Cai J, Xi Z, Xie H (2017) Ethylene vinyl acetate copolymer modified epoxy asphalt binders: phase separation evolution and mechanical properties. Constr Build Mater 137:55–65. https://doi.org/10.1016/j.conbuildmat.2017.01.081

    Article  Google Scholar 

  30. Li R, Leng Z, Partl MN, Raab C (2021) Characterization and modelling of creep and recovery behaviour of waterborne epoxy resin modified bitumen emulsion. Mater Struct. https://doi.org/10.1617/s11527-020-01594-6

    Article  Google Scholar 

  31. Xu W, Zhuang G, Chen Z, Wei J (2020) Experimental study on the micromorphology and strength formation mechanism of epoxy asphalt during the curing reaction. Appl Sci-Basel. https://doi.org/10.3390/app10072610

    Article  Google Scholar 

  32. Kaya D, Topal A, McNally T (2019) Correlation of processing parameters and ageing with the phase morphology of styrene-butadiene-styrene block co-polymer modified bitumen. Mater Res Expr. https://doi.org/10.1088/2053-1591/ab349c

    Article  Google Scholar 

  33. Hao G, Wang Y (2021) 3D reconstruction of polymer phase in polymer-modified asphalt using confocal fluorescence microscopy. J Mater Civil Eng. https://doi.org/10.1061/(asce)mt.1943-5533.0003485

    Article  Google Scholar 

  34. Shi C, Zhou W, Wang T, Cai X, Wang H, Yang J, Hong J, Gong M (2022) Fatigue performance characterization of styrene-butadiene-styrene and crumb rubber composite modified asphalt binders with high crumb rubber contents. J Clean Prod. https://doi.org/10.1016/j.jclepro.2021.129979

    Article  Google Scholar 

  35. Chen H, Zhang Y, Bahia HU (2021) Estimating asphalt binder fatigue at multiple temperatures using a simplified pseudo-strain energy analysis approach in the LAS test. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.120911

    Article  Google Scholar 

  36. Chen H, Bahia H (2021) Modelling effects of aging on asphalt binder fatigue using complex modulus and the LAS test. Int J Fatigue. https://doi.org/10.1016/j.ijfatigue.2021.106150

    Article  Google Scholar 

  37. Zeng Z, Underwood BS, Castorena C (2020) Low-temperature performance grade characterisation of asphalt binder using the dynamic shear rheometer. Int J Pavement Eng. https://doi.org/10.1080/10298436.2020.1774766

    Article  Google Scholar 

  38. Anderson DA, Christensen DW, Bahia HU, Dongre R, Sharma MG, Antle C, Button JJAC (1994) Binder characterization and evaluation. Volume 3: physical characterization. 3

  39. Zeng Z, Zhang D, Liu H (2021) Development of an energy-based framework to determine the surface free energy of asphalt binder: theoretical models. Mater Struct. https://doi.org/10.1617/s11527-021-01834-3

    Article  Google Scholar 

  40. Zhang D, Liu H (2018) Proposed approach for determining consistent energy parameters based on the surface free energy theory. J Mater Civil Eng 30:11. https://doi.org/10.1061/(asce)mt.1943-5533.0002467

    Article  Google Scholar 

  41. Zhu H, Sun L, Yang J, Chen Z, Gu W (2011) Developing master curves and predicting dynamic modulus of polymer-modified asphalt mixtures. J Mater Civ Eng 23(2):131–137. https://doi.org/10.1061/(asce)mt.1943-5533.0000145

    Article  Google Scholar 

  42. Rouleau L, Deü JF, Legay A, Le Lay F (2013) Application of Kramers-Kronig relations to time–temperature superposition for viscoelastic materials. Mech Mater 65:66–75. https://doi.org/10.1016/j.mechmat.2013.06.001

    Article  Google Scholar 

  43. Parot JM, Duperray B (2007) Applications of exact causality relationships to materials dynamic analysis. Mech Mater 39(5):419–433. https://doi.org/10.1016/j.mechmat.2006.07.004

    Article  Google Scholar 

  44. Carreau PJ (1972) Rheological equations from molecular network theories. Trans Soc Rheol 16(1):99–000. https://doi.org/10.1122/1.549276

    Article  Google Scholar 

  45. Narayan SPA, Little DN, Rajagopal KR (2019) Incorporating disparity in temperature sensitivity of asphalt binders into high-temperature specifications. J Mater Civil Eng 31:1. https://doi.org/10.1061/(asce)mt.1943-5533.0002534

    Article  Google Scholar 

  46. Herrington PR (1998) Oxidation of bitumen in the presence of a constant concentration of oxygen. Pet Sci Technol 16(9–10):1061–1084. https://doi.org/10.1080/10916469808949824

    Article  Google Scholar 

  47. Shan LU, Tan YQ, Underwood S, Kim YR (2010) Application of thixotropy to analyze fatigue and healing characteristics of asphalt binder. Transp Res Rec 2179:85–92. https://doi.org/10.3141/2179-10

    Article  Google Scholar 

  48. Jin X, Han R, Cui Y, Glover CJ (2011) Fast-rate–constant-rate oxidation kinetics model for asphalt binders. Ind Eng Chem Res 50(23):13373–13379. https://doi.org/10.1021/ie201275q

    Article  Google Scholar 

  49. Luo X, Gu F, Zhang Y, Lytton RL, Birgisson B (2018) Kinetics-based aging evaluation of in-service recycled asphalt pavement. J Clean Prod 200:934–944. https://doi.org/10.1016/j.jclepro.2018.07.267

    Article  Google Scholar 

  50. Ma F, Luo X, Li H, Huang Z (2021) Healing kinetics of asphalt binder based on a new testing approach. Constr Build Mater 305:8. https://doi.org/10.1016/j.conbuildmat.2021.124646

    Article  Google Scholar 

  51. Notani MA, Arabzadeh A, Satvati S, Tabesh MT, Hashjin NG, Estakhri S, Alizadeh M (2020) Investigating the high-temperature performance and activation energy of carbon black-modified asphalt binder. Sn Appl Sci 2:2. https://doi.org/10.1007/s42452-020-2102-z

    Article  Google Scholar 

  52. Mahmoudi Y, Mangiafico S, Sauzéat C, Di Benedetto H, Pouget S, Faure J-P (2020) Tridimensional linear viscoelastic properties of bituminous mixtures produced with crumb rubber added by dry process. Road Mater Pavement Des 22(9):2086–2096. https://doi.org/10.1080/14680629.2020.1737566

    Article  Google Scholar 

  53. Shen J, Amirkhanian S (2005) The influence of crumb rubber modifier (CRM) microstructures on the high temperature properties of CRM binders. Int J Pavement Eng 6(4):265–271. https://doi.org/10.1080/10298430500373336

    Article  Google Scholar 

  54. Airey GD, Rahman MM, Collop AC (2003) Absorption of bitumen into crumb rubber using the basket drainage method. Int J Pavement Eng 4(2):105–119. https://doi.org/10.1080/1029843032000158879

    Article  Google Scholar 

  55. Hussein IA, Iqbal MH, Al-Abdul-Wahhab HI (2005) Influence of Mw of LDPE and vinyl acetate content of EVA on the rheology of polymer modified asphalt. Rheol Acta 45(1):92–104. https://doi.org/10.1007/s00397-005-0455-2

    Article  Google Scholar 

  56. Garcia-Morales M, Partal FJ Navarro P, Martinez-Boza F, Gallegos C, González N, González O, Muñoz ME (2004) Viscous properties and microstructure of recycled eva modified bitumen. Fuel 83(1):31–38. https://doi.org/10.1016/S0016-2361(03)00217-5

    Article  Google Scholar 

  57. Anderson DA, Le Hir YM, Planche J-P, Martin D, Shenoy A (2002) Zero shear viscosity of asphalt binders. 1810 (1):54-62. doi:https://doi.org/10.3141/1810-07

  58. Salomon HD (2002) Ranking asphalt binders by activation energy for flow. J Appl Asphalt Binder Technol 2:2

    Google Scholar 

  59. Marasteanu MO, Clyne T, McGraw J, Li X, Velasquez R (2005) High-temperature rheological properties of asphalt binders. Transp Res Rec 1901 1:52–59. https://doi.org/10.1177/0361198105190100107

    Article  Google Scholar 

  60. Haider SW, Mirza MW, Thottempudi AK, Bari J, Baladi GY (2011) characterizing temperature susceptibility of asphalt binders using activation energy for flow. In: T&DI Congress 2011 : Integrated Transportation and Development for a Better Tomorrow. pp 493–503. doi:doi:https://doi.org/10.1061/41167(398)48

Download references

Acknowledgements

The authors acknowledge the financial support of the National Natural Science Foundation of China (No. 52078130, No. 51778140), Technology Research and Development Program of China State Railway Group Co., Ltd (No. P2019G030), the Scientific Research Foundation of Graduate School of Southeast University (No. YBPY2158), and China Scholarship Council program (No. 202106090047).

Author information

Authors and Affiliations

Authors

Contributions

CS: Conceptualization, Methodology, Formal analysis, Investigation, Writing-original draft, Visualization. YW: Writing-review & editing, Formal analysis. TW: Data curation. YY: Writing-original draft. HW: Visualization JY: Writing-review & editing, Funding acquisition, Resources, Supervision.

Corresponding authors

Correspondence to Chenguang Shi or Jun Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, C., Wu, Y., Wang, T. et al. Rheological properties and polymer phase structure characterization of SBS/CR composite modified asphalt (CMA) binders. Mater Struct 56, 33 (2023). https://doi.org/10.1617/s11527-023-02122-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-023-02122-y

Keywords

Navigation