Skip to main content
Log in

Effects of Ca(OH)2 on the reinforcement corrosion of sulfoaluminate cement mortar

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This study aims to explore the effects of different Ca(OH)2 contents on the mechanical performance and corrosion behaviors of steel in Calcium sulfoaluminate (CSA) cement, where compressive strength, corrosion potentials of reinforcements, corrosion current density, pH of pore solution as well as mortar resistivity of CSA/Ca(OH)2 mortar were researched, and the corrosion behaviors were further interpreted by the clarification of hydration phases through microstructural analyses. The initial results highlighted the positive effects of using adequate Ca(OH)2 (~ 6%) in CSA mortar in terms of strength, yet its excessive addition could delay the subsequent hydration reaction of CSA. Meanwhile, with an increased quantity of Ca(OH)2, the amount of some hydration phases, such as Al(OH)3 reduced, resulting from their reaction with Ca(OH)2. Finally, the corrosion current density increased with the reduced mortar resistivity when the reinforcement in CSA/Ca(OH)2 system was corroded, and their relationship was also provided in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AFm:

Monosulfide hydrated calcium sulfoaluminate, 3CaO·Al2O3·CaSO4·12H2O, C3A·C$·H12

AFt:

Ettringite, 3CaO·Al2O3·3CaSO4·32H2O, C3A·3C$·H32

AH3 :

Aluminum hydroxide, Al(OH)3

Anhydrite:

Calcium sulfate, CaSO4

CSA:

Calcium sulfoaluminate

Gypsum:

Calcium sulfate dihydrate, CaSO4·2H2O

OPC:

Ordinary portland cement

Strätlingite:

Hydrated calcium aluminosilicate, C2ASH8, 2CaO·Al2O3·SiO2·8H2O

References

  1. Lejouad C, Richard B, Mongabure P, Capdevielle S, Ragueneau F (2022) Experimental study of corroded RC beams: dissipation and equivalent viscous damping ratio identification. Mater Struct 55(2):1–17

    Article  Google Scholar 

  2. Shen J, Gao X, Li B, Du K, Jin R, Chen W et al (2019) Damage evolution of rc beams under simultaneous reinforcement corrosion and sustained load. Materials 12(4):627

    Article  Google Scholar 

  3. Castro-Borges P, Torres-Acosta AA, Balancán-Zapata MG (2021) Long term correlation between concrete cracking and corrosion in natural marine micro-environments. Mater Struct 54(6):1–14

    Article  Google Scholar 

  4. Noushini A, Nguyen QD, Castel A (2021) Assessing alkali-activated concrete performance in chloride environments using NT build 492. Mater Struct 54(2):1–15

    Article  Google Scholar 

  5. Xu Y, Song Y (2021) Chemical-mechanical transformation of the expansion effect for nonuniform steel corrosion and its application in predicting the concrete cover cracking time. Cem Concr Compos 127:104376

    Article  Google Scholar 

  6. Cao Q, Xu Y, Fang J, Song Y, Wang Y, You W (2020) Influence of pore size and fatigue loading on NaCl transport properties in CSH nanopores: a molecular dynamics simulation. Materials 13(3):700

    Article  Google Scholar 

  7. Zeng W, Zhao Y, Zheng H, Sun PC (2020) Improvement in corrosion resistance of recycled aggregate concrete by nano silica suspension modification on recycled aggregates. Cem Concr Compos 106:103476

    Article  Google Scholar 

  8. Shen J, Liu J, Xu Y, Jia K, Wu F, Chen W et al (2021) Corrosion cracking process of reinforced concrete under the coupled effects of chloride and fatigue loading. KSCE J Civ Eng 25(9):3376–3389

    Article  Google Scholar 

  9. Fu C, Fang D, Ye H, Huang L, Wang J (2021) Bond degradation of non-uniformly corroded steel rebars in concrete. Eng Struct 226:111392

    Article  Google Scholar 

  10. Zhang J, Huang J, Fu C, Huang L, Ye H (2021) Characterization of steel reinforcement corrosion in concrete using 3D laser scanning techniques. Constr Build Mater 270:121402

    Article  Google Scholar 

  11. Luo S, Zhao M, Jiang Z, Liu S, Yang L, Mao Y et al (2022) Microwave preparation and carbonation properties of low-carbon cement. Constr Build Mater 320:126239

    Article  Google Scholar 

  12. Chen H, Guo Z, Hou P, Fu X, Qu Y, Li Q et al (2020) The influence of surface treatment on the transport properties of hardened calcium sulfoaluminate cement-based materials. Cem Concr Compos. https://doi.org/10.1016/j.cemconcomp.2020.103784

    Article  Google Scholar 

  13. Li P, Ma Z, Zhang Z, Li X, Lu X, Hou P et al (2019) Effect of gypsum on hydration and hardening properties of alite modified calcium sulfoaluminate cement. Materials. https://doi.org/10.3390/ma12193131

    Article  Google Scholar 

  14. Tang X, Xu Q, Qian K, Ruan S, Lian S, Zhan S (2021) Effects of cyclic seawater exposure on the mechanical performance and chloride penetration of calcium sulfoaluminate concrete. Constr Build Mater 303:124139

    Article  Google Scholar 

  15. Seo J, Park S, Kim S, Yoon HN, Lee HK (2022) Local Al network and material characterization of belite-calcium sulfoaluminate (CSA) cements. Mater Struct. https://doi.org/10.1617/s11527-021-01842-3

    Article  Google Scholar 

  16. Yang Y, Massicotte B, Genikomsou AS, Pantazopoulou SJ, Palermo D (2021) Comparative investigation on tensile behaviour of UHPFRC. Mater Struct. https://doi.org/10.1617/s11527-021-01747-1

    Article  Google Scholar 

  17. Gartner E (2004) Industrially interesting approaches to “low-CO2” cements. Cem Concr Res 34(9):1489–1498

    Article  Google Scholar 

  18. Amato I (2013) Green cement: concrete solutions. Nat News 494(7437):300

    Article  Google Scholar 

  19. Telesca A, Marroccoli M, Coppola L, Coffetti D, Candamano S (2021) Tartaric acid effects on hydration development and physico-mechanical properties of blended calcium sulphoaluminate cements. Cem Concr Compos 124:104275

    Article  Google Scholar 

  20. Li H, Guan X, Zhang X, Ge P, Hu X, Zou D (2018) Influence of superfine ettringite on the properties of sulphoaluminate cement-based grouting materials. Constr Build Mater 166:723–731

    Article  Google Scholar 

  21. Pelletier-Chaignat L, Winnefeld F, Lothenbach B, Müller CJ (2012) Beneficial use of limestone filler with calcium sulphoaluminate cement. Constr Build Mater 26(1):619–627

    Article  Google Scholar 

  22. Chen IA, Juenger MC (2012) Incorporation of coal combustion residuals into calcium sulfoaluminate-belite cement clinkers. Cem Concr Compos 34(8):893–902

    Article  Google Scholar 

  23. Telesca A, Marroccoli M, Winnefeld F (2019) Synthesis and characterisation of calcium sulfoaluminate cements produced by different chemical gypsums. Adv Cem Res 31(3):113–123

    Article  Google Scholar 

  24. Shen Y, Qian J, Chai J, Fan Y (2014) Calcium sulphoaluminate cements made with phosphogypsum: production issues and material properties. Cem Concr Compos 48:67–74

    Article  Google Scholar 

  25. Kalogridis D, Kostogloudis GC, Ftikos C, Malami C (2000) A quantitative study of the influence of non-expansive sulfoaluminate cement on the corrosion of steel reinforcement. Cem Concr Res 30(11):1731–1740

    Article  Google Scholar 

  26. Janotka I, Krajči L (1999) An experimental study on the upgrade of sulfoaluminate—belite cement systems by blending with portland cement. Adv Cem Res 11(1):35–41

    Article  Google Scholar 

  27. Glasser FP, Zhang L (2001) High-performance cement matrices based on calcium sulfoaluminate–belite compositions. Cem Concr Res 31(12):1881–1886

    Article  Google Scholar 

  28. Carsana M, Canonico F, Bertolini L (2018) Corrosion resistance of steel embedded in sulfoaluminate-based binders. Cem Concr Compos 88:211–219

    Article  Google Scholar 

  29. Dick J, De Windt W, De Graef B, Saveyn H, Van der Meeren P, De Belie N et al (2006) Bio-deposition of a calcium carbonate layer on degraded limestone by bacillus species. Biodegradation 17(4):357–367

    Article  Google Scholar 

  30. Runci A, Provis J, Serdar M (2022) Microstructure as a key parameter for understanding chloride ingress in alkali-activated mortars. Cem Concr Compos 134:104818

    Article  Google Scholar 

  31. Wu JW, Bai D, Baker A, Li ZH, Liu XB (2015) Electrochemical techniques correlation study of on-line corrosion monitoring probes. Mater Corros 66(2):143–151

    Article  Google Scholar 

  32. Mundra S, Provis JL (2020) Steel reinforcement in slag containing binders and its susceptibility to chloride-induced corrosion. In: RILEM spring convention and conference: Springer, p 295–303

  33. Hornbostel K, Larsen CK, Geiker MR (2013) Relationship between concrete resistivity and corrosion rate–a literature review. Cem Concr Compos 39:60–72

    Article  Google Scholar 

  34. Poursaee A (2010) Potentiostatic transient technique, a simple approach to estimate the corrosion current density and stern-geary constant of reinforcing steel in concrete. Cem Concr Res 40(9):1451–1458

    Article  Google Scholar 

  35. Andrade CGJA (1978) Quantitative measurements of corrosion rate of reinforcing steels embedded in concrete using polarization resistance measurements. Mater Corros 29(9):515–519

    Article  Google Scholar 

  36. Wang LB (2020) Pore solution composition of calcium sulphoaluminate cement based material and its effects on steel corrosion. Zhejiang University, Hangzhou

    Google Scholar 

  37. Zhu X, Zhang M, Yang Y, Yang K, Wu F, Li Q et al (2019) Understanding the aqueous phases of alkali-activated slag paste under water curing. Adv Cem Res 33:1–15

    Google Scholar 

  38. Shi T, Liu Y, Zhang Y, Lan Y, Zhao Q, Zhao Y et al (2022) Calcined attapulgite clay as supplementary cementing material: thermal treatment, hydration activity and mechanical properties. Int J Concr Struct Mater 16(1):1–10

    Article  Google Scholar 

  39. Lian S, Ruan S, Zhan S, Unluer C, Meng T, Qian K (2022) Unlocking the role of pores in chloride permeability of recycled concrete: a multiscale and a statistical investigation. Cem Concr Compos 125:104320

    Article  Google Scholar 

  40. Qian K, Song Y, Lai J, Qian X, Zhang Z, Liang Y et al (2022) Characterization of historical mortar from ancient city walls of Xindeng in Fuyang China. Constr Build Mater 315:125780

    Article  Google Scholar 

  41. Zhang L, Ma R, Lai J, Ruan S, Qian X, Yan D et al (2022) Performance buildup of concrete cured under low-temperatures: use of a new nanocomposite accelerator and its application. Constr Build Mater 335:127529

    Article  Google Scholar 

  42. Ma R, Chen Q, Jiang Z, Qian X, Song Y, Ruan S (2022) Performances of UHPC bonded cementitious composite systems containing styrene-butadiene rubber latex in a chloride-rich environment. Constr Build Mater 353:129126

    Article  Google Scholar 

  43. Chen Q, Ma R, Li H, Jiang Z, Zhu H, Yan Z (2021) Effect of chloride attack on the bonded concrete system repaired by UHPC. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.121971

    Article  Google Scholar 

  44. Lian S, Meng T, Song H, Wang Z, Li J (2021) Relationship between percolation mechanism and pore characteristics of recycled permeable bricks based on X-ray computed tomography. Rev Adv Mater Sci 60(1):207–215. https://doi.org/10.1515/rams-2021-0022

    Article  Google Scholar 

  45. Derkani MH, Bartlett NJ, Koma G, Carter LA, Geddes DA, Provis JL et al (2022) Mechanisms of dispersion of metakaolin particles via adsorption of sodium naphthalene sulfonate formaldehyde polymer. J Colloid Interface Sci 628:745–757

    Article  Google Scholar 

  46. Pan C, Song Y, Zhao Y, Meng T, Zhang Y, Chen R et al (2022) Performance buildup of reactive magnesia cement (RMC) formulation via using CO2-strengthened recycled concrete aggregates (RCA). J Build Eng 65:105779

    Article  Google Scholar 

  47. Li L, Zhong X, Ling T-C (2022) Effects of accelerated carbonation and high temperatures exposure on the properties of EAFS and BOFS pressed blocks. J Build Eng 45:103504

    Article  Google Scholar 

  48. McCusker L, Von Dreele R, Cox D, Louër D, Scardi P (1999) Rietveld refinement guidelines. J Appl Crystallogr 32(1):36–50

    Article  Google Scholar 

  49. Kong Y, Song Y, Kurumisawa K, Wang T, Yan D, Zeng Q et al (2022) Use of hydrated cement pastes (HCP) as a CO2 sponge. J Util 55:101804

    Article  Google Scholar 

  50. Kong Y, Song Y, Weng Y, Kurumisawa K, Yan D, Zhou X et al (2022) Influences of CO2-cured cement powders on hydration of cementpaste. Greenh Gases Sci Technol 12:249–262

    Article  Google Scholar 

  51. Zhang J, Li G, Ye W, Chang Y, Liu Q, Song Z (2018) Effects of ordinary Portland cement on the early properties and hydration of calcium sulfoaluminate cement. Constr Build Mater 186:1144–1153

    Article  Google Scholar 

  52. Sosa Gallardo AF, Provis JL (2022) Early-age characterisation of portland cement by impedance spectroscopy. Adv Cem Res. https://doi.org/10.1680/jadcr.21.00103

    Article  Google Scholar 

  53. Song Y, Dong M, Wang Z, Qian X, Yan D, Shen S et al (2022) Effects of red mud on workability and mechanical properties of autoclaved aerated concrete (AAC). J Build Eng 61:105238

    Article  Google Scholar 

  54. Walkley B, Geddes DA, Matsuda T, Provis JL (2022) Reversible adsorption of polycarboxylates on silica fume in high pH, high ionic strength environments for control of concrete fluidity. Langmuir 38(5):1662–1671

    Article  Google Scholar 

  55. Li L, Ling T-C, Cheng Q, Mo KH (2021) Synergistic effect of pre-carbonated slurry and mixing sequence on the performance of self-compacting recycled aggregate modified mortar. Waste Biomass Valoriz 12(9):5201–5210

    Article  Google Scholar 

  56. Li L, Zhang Y, Liu Y, Ling T-C (2022) Upcycling coal-and soft-series metakaolin in blended cement with limestone. Constr Build Mater 327:126965

    Article  Google Scholar 

  57. Shi T, Liu Y, Zhao X, Wang J, Zhao Z, Corr DJ et al (2022) Study on mechanical properties of the interfacial transition zone in carbon nanofiber-reinforced cement mortar based on the peak force tapping mode of atomic force microscope. J Build Eng 61:105248

    Article  Google Scholar 

  58. Pelletier-Chaignat L, Winnefeld F, Lothenbach B, Le Saout G, Müller CJ, Famy C (2011) Influence of the calcium sulphate source on the hydration mechanism of portland cement–calcium sulphoaluminate clinker–calcium sulphate binders. Cem Concr Compos 33(5):551–561

    Article  Google Scholar 

  59. Ke G, Zhang X, Zhang J (2022) Hydration characteristics of calcium sulfoaluminate-fly ash mixed with different alkalies. Case Stud Constr Mater 17:e01478

    Google Scholar 

  60. Bergmans J, Nielsen P, Snellings R, Broos K (2016) Recycling of autoclaved aerated concrete in floor screeds: sulfate leaching reduction by ettringite formation. Constr Build Mater 111:9–14

    Article  Google Scholar 

  61. Wang R, Li J, Yue X (2020) Influence of carboxylated styrene–butadiene copolymer on tetracalcium aluminoferrite hydration in the presence of gypsum. Adv Cem Res 32(1):30–42

    Article  Google Scholar 

  62. García-Maté M, Santacruz I, Ángeles G, León-Reina L, Aranda MA (2012) Rheological and hydration characterization of calcium sulfoaluminate cement pastes. Cem Concr Compos 34(5):684–691

    Article  Google Scholar 

  63. Park S, Jeong Y, Moon J, Lee N (2021) Hydration characteristics of calcium sulfoaluminate (CSA) cement/portland cement blended pastes. J Build Eng 34:101880

    Article  Google Scholar 

  64. Song FYZ, Yang F et al (2015) Microstructure of amorphous aluminum hydroxide in belite-calcium sulfoaluminate cement. Cem Concr Res 71:1–6

    Article  Google Scholar 

  65. Pane I, Hansen W (2005) Investigation of blended cement hydration by isothermal calorimetry and thermal analysis. Cem Concr Res 35(6):1155–1164

    Article  Google Scholar 

  66. Liu W, Li Y, Lin S, Tang L, Dong Z, Xing F et al (2020) Changes in chemical phases and microscopic characteristics of fly ash blended cement pastes in different CO2 concentrations. Constr Build Mater 257:119598

    Article  Google Scholar 

  67. Lothenbach B, Le Saout G, Gallucci E, Scrivener K (2008) Influence of limestone on the hydration of portland cements. Cem Concr Res 38(6):848–860

    Article  Google Scholar 

  68. Winnefeld F, Lothenbach B (2010) Hydration of calcium sulfoaluminate cements—experimental findings and thermodynamic modelling. Cem Concr Res 40(8):1239–1247

    Article  Google Scholar 

  69. Van Oss HG, Padovani AC (2002) Cement manufacture and the environment-part I: chemistry and technology. J Ind Ecol 6(1):89–106

    Article  Google Scholar 

  70. Leelalerkiet V, Kyung J-W, Ohtsu M, Yokota M (2004) Analysis of half-cell potential measurement for corrosion of reinforced concrete. Constr Build Mater 18(3):155–162

    Article  Google Scholar 

  71. Sadowski L (2013) Methodology for assessing the probability of corrosion in concrete structures on the basis of half-cell potential and concrete resistivity measurements. Sci World J. https://doi.org/10.1155/2013/714501

    Article  Google Scholar 

  72. Shi J-J, Sun W (2011) Effect of benzotriazole as corrosion inhibitor for reinforcing steel in cement mortar. Acta Phys Chim Sin 27(6):1457–1466

    Article  Google Scholar 

  73. Wang L, Zhan S, Tang X, Xu Q, Qian K (2019) Pore solution chemistry of calcium sulfoaluminate cement and its effects on steel passivation. Appl Sci 9(6):1092

    Article  Google Scholar 

  74. Yang K-H, Cho A-R, Song J-K, Nam S-H (2012) Hydration products and strength development of calcium hydroxide-based alkali-activated slag mortars. Constr Build Mater 29:410–419

    Article  Google Scholar 

  75. Haenni S, Schmidlin P, Mueller B, Sener B, Zehnder M (2003) Chemical and antimicrobial properties of calcium hydroxide mixed with irrigating solutions. Int Endod J 36(2):100–105

    Article  Google Scholar 

  76. Wang D, Yue Y, Mi T, Yang S, McCague C, Qian J et al (2020) Effect of magnesia-to-phosphate ratio on the passivation of mild steel in magnesium potassium phosphate cement. Corros Sci 174:108848

    Article  Google Scholar 

  77. Liao Y (2013) Study on hydration and shrinkage characterization of cement pastes using electrical resistivity measurement. Huazhong University of Science and Technology, Wuhan

    Google Scholar 

  78. Shen H, Zhan S, Xu Q, Ruan S, Tang X, Qiang K (2021) The influence of sulphoaluminate and portland mixed cement on the corrosion of steel in mortar. New Build Mater 48(11):12–5+9

    Google Scholar 

  79. Cosoli G, Mobili A, Tittarelli F, Revel GM, Chiariotti P (2020) Electrical resistivity and electrical impedance measurement in mortar and concrete elements: a systematic review. Appl Sci 10(24):9152

    Article  Google Scholar 

  80. Miranda J, González J, Cobo A, Otero E (2006) Several questions about electrochemical rehabilitation methods for reinforced concrete structures. Corros Sci 48(8):2172–2188

    Article  Google Scholar 

  81. Bastidas DM, Palomo A et al (2008) A study on the passive state stability of steel embedded in activated fly ash mortars. Corros Sci 50(4):1058–4065

    Article  Google Scholar 

  82. Winnefeld F, Barlag S (2009) Influence of calcium sulfate and calcium hydroxide on the hydration of calcium sulfoaluminate clinker. Zkg Int 62(12):42–53

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for the assistance from Yu Peng from the College of Civil Engineering and Architecture, Zhejiang University, for the aid in SEM analysis. We also thank Chaogang Xing, Dongmei Qi and Sibo Zhan for XRD, TG/DTG and XRF analyses at Core Facilities for Agriculture, Life and Environment Sciences, Zhejiang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaoqin Ruan.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Zhang, Y., Shen, S. et al. Effects of Ca(OH)2 on the reinforcement corrosion of sulfoaluminate cement mortar. Mater Struct 56, 26 (2023). https://doi.org/10.1617/s11527-023-02110-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-023-02110-2

Keywords

Navigation