Skip to main content

Advertisement

Log in

The influence of expanded polystyrene granules on the properties of foam concrete

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Foam concrete stands out among special concrete for presenting a porous structure by incorporating foam into the cement matrix. The tendency for bubbles to coalesce and collapse during preparation poses some challenges in production and control over the properties of cell structures. This research aims to evaluate the behavior of cellular concrete using ultra-lightweight expanded polystyrene aggregate (EPS) as a source for reducing specific mass. Since, there are few publications investigating the integration of EPS pearls in foam concrete. For comparison, samples were made with Portland cement and quartz aggregate using the dosage method proposed by Ferreira (1987) for foamed concrete. In these concretes, properties in the plastic state were evaluated, compressive strength and ultrasonic wave propagation velocity tests were carried out at 3, 7, and 28 days and, in addition to these tests, at 28 days, the absorption, thermogravimetric analysis, and X-ray diffraction were carried out, under three water/binder factors: 0.38, 0.42 and 0.46. The results showed an apparent specific mass below 750 kg/m3 and mechanical strength of up to 1 MPa. The replacement of expanded polystyrene promoted an average reduction in mass over the volume of around 30%. Making the technology more commercial for the use of thermal and acoustic insulators requires further studies to improve the product. In general, EPS aggregate is a viable and advantageous alternative when applied to cellular concrete from the point of view of the civil construction industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Scrivener KL, Kirkpatrick RJ (2008) Innovation in use and research on cementitious material. Cem Concr Res 38:128–136. https://doi.org/10.1016/j.cemconres.2007.09.025

    Article  Google Scholar 

  2. PetekGursel A, Masanet E, Horvath A, Stadel A (2014) Life-cycle inventory analysis of concrete production: a critical review. Cem Concr Compos 51:38–48. https://doi.org/10.1016/j.cemconcomp.2014.03.005

    Article  Google Scholar 

  3. Meyer C (2009) The greening of the concrete industry. Cem Concr Compos 31:601–605. https://doi.org/10.1016/j.cemconcomp.2008.12.010

    Article  Google Scholar 

  4. Font A, Soriano L, Monzó J, Moraes JCB, Borrachero MV, Payá J (2020) (2020) Salt slag recycled by-products in high insulation alternative environmentally friendly cellular concrete manufacturing. Constr Build Mater 231:117114. https://doi.org/10.1016/j.conbuildmat.2019.117114

    Article  Google Scholar 

  5. Brady KC, Watts GRA, Jones MR (2001) Specification for foamed concrete. TRL Ltd. 78

  6. Narayanan N, Ramamurthy K (2000) Structure and properties of aerated concrete: a review. Cem Concr Compos 22:321–329. https://doi.org/10.1016/S0958-9465(00)00016-0

    Article  Google Scholar 

  7. Olivier JGJ, Janssens-Maenhout G, Peters JaHW (2012) Trends in global CO2 emissions: 2012 Report, PBL Netherlands environmental assessment agency

  8. Panesar DK (2013) Cellular concrete properties and the effect of synthetic and protein foaming agents. Constr Build Mater 44:575–584. https://doi.org/10.1016/j.conbuildmat.2013.03.024

    Article  Google Scholar 

  9. Kuzielová E, Pach L, Palou M (2016) Effect of activated foaming agent on the foam concrete properties. Constr Build Mater 125:998–1004. https://doi.org/10.1016/j.conbuildmat.2016.08.122

    Article  Google Scholar 

  10. Sang G, Zhu Y, Yang G, Zhang H (2015) Preparation and characterization of high porosity cement-based foam material. Constr Build Mater 91:133–137. https://doi.org/10.1016/j.conbuildmat.2015.05.032

    Article  Google Scholar 

  11. Ma C, Chen B (2016) Properties of foamed concrete containing water repellents. Constr Build Mater 123:106–114. https://doi.org/10.1016/j.conbuildmat.2016.06.148

    Article  Google Scholar 

  12. Yang KH, Lee KH, Song JK, Gong MH (2014) Properties and sustainability of alkali-activated slag foamed concrete. J Clean Prod 68:226–233. https://doi.org/10.1016/j.jclepro.2013.12.068

    Article  Google Scholar 

  13. Amran YHM, Farzadnia N, Ali AAA (2015) Properties and applications of foamed concrete; a review. Constr Build Mater 101:990–1005. https://doi.org/10.1016/j.conbuildmat.2015.10.112

    Article  Google Scholar 

  14. Chica L, Alzate A (2019) Cellular concrete review: new trends for application in construction. Constr Build Mater 200:637–647. https://doi.org/10.1016/j.conbuildmat.2018.12.136

    Article  Google Scholar 

  15. Mak S, Seo S, Ambrose M, Gesthuizen L (2008) Sustainable Housing using lightweight cellular concrete, Proceedings of the Conference on Sustainable Building SB08 Melbourne, p. 314–321

  16. Santha Kumar G, Mishra AK (2021) Influence of granite fine powder on the performance of cellular light weight concrete. J Build Eng 40:102707. https://doi.org/10.1016/j.jobe.2021.102707

    Article  Google Scholar 

  17. Mastali M, Kinnunen P, Isomoisio H, Karhu M, Illikainen M (2018) Mechanical and acoustic properties of fiber-reinforced alkali-activated slag foam concretes containing lightweight structural aggregates. Constr Build Mater 187:371–381. https://doi.org/10.1016/j.conbuildmat.2018.07.228

    Article  Google Scholar 

  18. Hamad Ali J (2014) Materials, production, properties and application of aerated lightweight concrete: review. Int J Mater Sci Eng. https://doi.org/10.12720/ijmse.2.2.152-157

    Article  Google Scholar 

  19. ACI Committee 523 (2006) “Guide for Cast-in-Place Low-Density Cellular Concrete,” Aci 523 1R p 13

  20. Shang X, Li J, Zhan B (2020) Properties of sustainable cellular concrete prepared with environment-friendly capsule aggregates. J Clean Prod 267:122018. https://doi.org/10.1016/j.jclepro.2020.122018

    Article  Google Scholar 

  21. Zhang Z, Provis JL, Reid A, Wang H (2014) Geopolymer foam concrete: an emerging material for sustainable construction. Constr Build Mater 56:113–127. https://doi.org/10.1016/j.conbuildmat.2014.01.081

    Article  Google Scholar 

  22. Esmaily H, Nuranian H (2012) Non-autoclaved high strength cellular concrete from alkali activated slag. Constr Build Mater 26:200–206. https://doi.org/10.1016/j.conbuildmat.2011.06.010

    Article  Google Scholar 

  23. Valore RC (1954) Cellular concretes part 1 composition and methods of preparation. ACI J Proc. https://doi.org/10.14359/11794

    Article  Google Scholar 

  24. Zaetang Y, Sata V, Wongsa A, Chindaprasirt P (2016) Properties of pervious concrete containing recycled concrete block aggregate and recycled concrete aggregate. Constr Build Mater 111:15–21. https://doi.org/10.1016/j.conbuildmat.2016.02.060

    Article  Google Scholar 

  25. Wijayasundara M, Mendis P, Crawford RH (2018) Integrated assessment of the use of recycled concrete aggregate replacing natural aggregate in structural concrete. J Clean Prod 174:591–604. https://doi.org/10.1016/j.jclepro.2017.10.301

    Article  Google Scholar 

  26. Aslani F, Wang L, Zheng M (2019) The effect of carbon nanofibers on fresh and mechanical properties of lightweight engineered cementitious composite using hollow glass microspheres. J Compos Mater 53:2447–2464. https://doi.org/10.1177/0021998319827078

    Article  Google Scholar 

  27. A.B.D.P.E. (ABRAPEX) (2006) EPS usage manual in construction, 2006, São Paulo

  28. Xu Y, Xu J, Jiang L, Chu H, Li Y (2015) Prediction of compressive strength and elastic modulus of expanded polystyrene lightweight concrete. Mag Concr Res 67:954–962. https://doi.org/10.1680/macr.14.00375

    Article  Google Scholar 

  29. SaradhiBabu D, Ganesh Babu K, Wee TH (2005) Properties of lightweight expanded polystyrene aggregate concretes containing fly ash. Cem Concr Res 35(6):1218–1223. https://doi.org/10.1016/j.cemconres.2004.11.015

    Article  Google Scholar 

  30. Allahverdi A, Azimi SA, Alibabaie M (2018) Development of multi-strength grade green lightweight reactive powder concrete using expanded polystyrene beads. Constr Build Mater 172:457–467. https://doi.org/10.1016/j.conbuildmat.2018.03.260

    Article  Google Scholar 

  31. Jiang T, Wang Y, Shi S, Yuan N, Ma R, Wu X, Shi D, Sun K, Zhao Y, Li W (2022) Yu J (2022) Compressive behavior of lightweight concrete using aerogel-reinforced expanded polystyrene foams. Case Stud Constr Mater 17:e01557. https://doi.org/10.1016/j.cscm.2022.e01557

    Article  Google Scholar 

  32. Jianan W, Xue K, Ding Z, Lang L, Kang G, Li X, Zhang M, Li D (2022) Investigation on thermal insulation and mechanical strength of lightweight aggregate concrete and porous mortar in cold regions. J Renew Mater 10(12):3167–3183. https://doi.org/10.32604/jrm.2022.020265

    Article  Google Scholar 

  33. Fernando PLN, Jayasinghe MTR, Jayasinghe C (2017) Structural feasibility of expanded polystyrene (EPS) based lightweight concrete sandwich wall panels. Constr Build Mater 139:45–51. https://doi.org/10.1016/j.conbuildmat.2017.02.027

    Article  Google Scholar 

  34. Babu KG, Babu DS (2003) Behaviour of lightweight expanded polystyrene concrete containing silica fume. Cem Concr Res 33:755–762. https://doi.org/10.1016/S0008-8846(02)01055-4

    Article  Google Scholar 

  35. Li Y, Liu N, Chen B (2015) Properties of lightweight concrete composed of magnesia phosphate cement and expanded polystyrene aggregates. Mater Struct Constr 48:269–276. https://doi.org/10.1617/s11527-013-0182-6

    Article  Google Scholar 

  36. Ozório BPM (2016) Lightweight concrete with EPS pearls: study of dosages and mechanical characteristics. University of Sao Paulo

    Google Scholar 

  37. Le Roy R, Parant E, Boulay C (2005) Taking into account the inclusions’ size in lightweight concrete compressive strength prediction. Cem Concr Res 35:770–775. https://doi.org/10.1016/j.cemconres.2004.06.002

    Article  Google Scholar 

  38. Laukaitis A, Žurauskas R, Keriene J (2005) The effect of foam polystyrene granules on cement composite properties. Cem Concr Compos 27:41–47. https://doi.org/10.1016/j.cemconcomp.2003.09.004

    Article  Google Scholar 

  39. Shabbar R, Al-Tameemi AA, Alhassani AMJ (2022) The effect of expanded polystyrene beads (EPS) on the physical and mechanical properties of aerated concrete. Open Eng 12:424–430. https://doi.org/10.1515/eng-2022-0020

    Article  Google Scholar 

  40. Shi J, Liu B, He Z, Liu Y, Jiang J, Xiong T, Shi J (2021) A green ultra-lightweight chemically foamed concrete for building exterior: a feasibility study. J Clean Prod 288:125085. https://doi.org/10.1016/j.jclepro.2020.125085

    Article  Google Scholar 

  41. Shi J, Liu B, Liu Y, Wang E, He Z, Xu H, Ren X (2020) Preparation and characterization of lightweight aggregate foamed geopolymer concretes aerated using hydrogen peroxide. Constr Build Mater 256:119442. https://doi.org/10.1016/j.conbuildmat.2020.119442

    Article  Google Scholar 

  42. Hernández-Zaragoza JB, López-Lara T, Horta-Rangel J, López-Cajún C, Eduardo Rojas-González FJ, García-Rodríguez JA (2013) Cellular concrete bricks with recycled expanded polystyrene aggregate. Adv Mater Sci Eng 2013:1–5. https://doi.org/10.1155/2013/160162

    Article  Google Scholar 

  43. Kligys M, Laukaitis A, Sinica M, Sezemanas G, Dranseika N (2008) Investigations into the fire hazard of a composite made from aerated concrete and crushed expanded polystyrene waste. Mech Compos Mater 44:173–180. https://doi.org/10.1007/s11029-008-9010-4

    Article  Google Scholar 

  44. Associação Brasileira De Normas Técnicas (2009) ABNTNBR NM 52: Fine aggregate—determination of specific mass and specific mass apparent 6

  45. Ferreira OAR (1987) Concretos celulares espumosos 24

  46. Associação Brasileira de Normas Técnicas (2020) NBR 12.644: structural cellular light concrete—determination of fresh bulk density 5

  47. Associação Brasileira de Normas Técnicas (2008) ABNT NBR 9833: fresh concrete-determination of density, yield and air content by the gravimetric method 28

  48. Associação Brasileira de Normas Técnicas (2017) NBR 15823–2—determination of scattering, flow time and visual stability indexabrams cone method

  49. Associação Brasileira de Normas Técnicas (2008) NBR 9778: hardened mortar and concrete-determination of water absorption by immersion-void index and specific mass, 8

  50. Assaad JJ, El Mir A (2020) Durability of polymer-modified lightweight flowable concrete made using expanded polystyrene. Constr Build Mater 249:118764. https://doi.org/10.1016/j.conbuildmat.2020.118764

    Article  Google Scholar 

  51. Madandoust R, Ranjbar MM, Yasin Mousavi S (2011) An investigation on the fresh properties of self-compacted lightweight concrete containing expanded polystyrene. Constr Build Mater 25(9):3721–3731. https://doi.org/10.1016/j.conbuildmat.2011.04.018

    Article  Google Scholar 

  52. Huang Z, Zhang T, Wen Z (2015) Proportioning and characterization of Portland cement-based ultra-lightweight foam concretes. Constr Build Mater 79:390–396. https://doi.org/10.1016/j.conbuildmat.2015.01.051

    Article  Google Scholar 

  53. Falliano D, De Domenico D, Ricciardi G, Gugliandolo E (2018) Experimental investigation on the compressive strength of foamed concrete: effect of curing conditions, cement type, foaming agent and dry density. Constr Build Mater 165:735–749. https://doi.org/10.1016/j.conbuildmat.2017.12.241

    Article  Google Scholar 

  54. Li P, Wu H, Liu Y, Yang J, Fang Z, Lin B (2019) Preparation and optimization of ultra-light and thermal insulative aerogel foam concrete. Constr Build Mater 205:529–542. https://doi.org/10.1016/j.conbuildmat.2019.01.212

    Article  Google Scholar 

  55. Cook D (1983) Expanded polystyrene concrete, 1st ed., Ed. London

  56. Babu DS, Ganesh Babu K, Tiong-Huan W (2006) Effect of polystyrene aggregate size on strength and moisture migration characteristics of lightweight concrete. Cem Concr Compos 28(6):520–527. https://doi.org/10.1016/j.cemconcomp.2006.02.018

    Article  Google Scholar 

  57. Kim HK, Jeon JH, Lee HK (2012) Workability, and mechanical, acoustic and thermal properties of lightweight aggregate concrete with a high volume of entrained air. Constr Build Mater 29:193–200. https://doi.org/10.1016/j.conbuildmat.2011.08.067

    Article  Google Scholar 

  58. Ganjian E, Jalull G, Sadeghi-Pouya H (2015) Using waste materials and by-products to produce concrete paving blocks. Constr Build Mater 77:270–275. https://doi.org/10.1016/j.conbuildmat.2014.12.048

    Article  Google Scholar 

  59. Godinho JP, de Souza Júnior TF, Medeiros MHF, Silva MSA (2020) Factors influencing ultrasonic pulse velocity in concrete. Revista IBRACON de Estruturas e Materiais 13(2):222–247. https://doi.org/10.1590/s1983-41952020000200004

    Article  Google Scholar 

  60. Rao SK, Sravana P, Rao TC (2016) Experimental studies in ultrasonic pulse velocity of roller compacted concrete pavement containing fly ash and M-sand studies in ultrasonic pulse velocity of roller compacted concrete pavement. Int J Pavement Res Technol 9:289–301. https://doi.org/10.1016/j.ijprt.2016.08.003

    Article  Google Scholar 

  61. Bogas JA, Gomes MG, Gomes A (2013) Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method. Ultrasonics 53:962–972. https://doi.org/10.1016/j.ultras.2012.12.012

    Article  Google Scholar 

  62. Kashani A, Ngo TD, Mendis P, Black JR, Hajimohammadi A (2017) A sustainable application of recycled tyre crumbs as insulator in lightweight cellular concrete. J Clean Prod 149:925–935. https://doi.org/10.1016/j.jclepro.2017.02.154

    Article  Google Scholar 

  63. Souza TB, Lima VME, Araújo FWC, Miranda LFR, MeloNeto AA (2021) Alkali-activated slag cellular concrete with expanded polystyrene (EPS)—physical, mechanical, and mineralogical properties. J Build Eng 44:103387. https://doi.org/10.1016/j.jobe.2021.103387

    Article  Google Scholar 

  64. Gül R, Demirboǧ R, Güvercin T (2006) Compressive strength and ultrasound pulse velocity of mineral admixtured mortars. Indian J Eng Mater Sci 13:18–24

    Google Scholar 

  65. Tiong HY, Lim SK, Lee YL, Ong CF, Yew MK (2020) Environmental impact and quality assessment of using eggshell powder incorporated in lightweight foamed concrete. Constr Build Mater 244:118341. https://doi.org/10.1016/j.conbuildmat.2020.118341

    Article  Google Scholar 

  66. Şahin M, Erdoğan ST, Bayer Ö (2018) Production of lightweight aerated alkali-activated slag pastes using hydrogen peroxide. Constr Build Mater 181:106–118. https://doi.org/10.1016/j.conbuildmat.2018.05.267

    Article  Google Scholar 

  67. Kearsley EP, Wainwright PJ (2001) Porosity and permeability of foamed concrete. Cem Concr Res 31(5):805–812. https://doi.org/10.1016/S0008-8846(01)00490-2

    Article  Google Scholar 

  68. Chung SY, Kim JS, Lehmann C, Stephan D, Han TS, Elrahman MA (2020) Investigation of phase composition and microstructure of foamed cement paste with different supplementary cementing materials. Cem Concr Compos 109:103560. https://doi.org/10.1016/j.cemconcomp.2020.103560

    Article  Google Scholar 

  69. Thiery M, Villain G, Dangla P, Platret G (2007) Investigation of the carbonation front shape on cementitious materials: effects of the chemical kinetics. Cem Concr Res 37:1047–1058. https://doi.org/10.1016/j.cemconres.2007.04.002

    Article  Google Scholar 

  70. Arandigoyen M, Bicer-Simsir B, Alvarez JI, Lange DA (2006) Variation of microstructure with carbonation in lime and blended pastes. Appl Surf Sci 252:7562–7571. https://doi.org/10.1016/j.apsusc.2005.09.007

    Article  Google Scholar 

  71. . Taylor HFW (1998) Cement chemistry, 2nd ed, Thomas Telford, London https://doi.org/10.1016/s0958-9465(98)00023-7

  72. Krishnan S, Bishnoi S, A, (2020) numerical approach for designing composite cements with calcined clay and limestone. Cem Concr Res 138:106232. https://doi.org/10.1016/j.cemconres.2020.106232

    Article  Google Scholar 

  73. Fares H, Remond S, Noumowe A, Cousture A (2010) High temperature behaviour of self-consolidating concrete microstructure and physicochemical properties. Cem Concr Res 40:488–496. https://doi.org/10.1016/j.cemconres.2009.10.006

    Article  Google Scholar 

  74. A.A. de Melo Neto, Effect of shrinkage compensating and reducing admixtures in alkali activated slag mortars and pastes, Universidade de São Paulo, 2008.

Download references

Acknowledgements

The authors would like to thank the Coordination for the Improvement of Higher Education Personnel (CAPES), for the financial support (finance code 001), and the Chemistry Laboratory of the Agreste Academic Center (CAA) for the structural support of the laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antônio Acácio de Melo Neto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, T.B., Medeiros, M.H.F., Araújo, F.W.C. et al. The influence of expanded polystyrene granules on the properties of foam concrete. Mater Struct 56, 19 (2023). https://doi.org/10.1617/s11527-023-02109-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-023-02109-9

Keywords

Navigation