Skip to main content
Log in

Analysis of the microcharacteristics of different kinds of asphalt based on different aging conditions

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Asphalt aging often leads to rapid degradation of road performance, which seriously affects the service life of asphalt pavement. Exploring the influence of asphalt oil sources, asphalt grades, and filler types on asphalt microcharacteristics in the asphalt aging process can provide an essential reference to guide asphalt pavement maintenance. In this study, we selected seven kinds of asphalt and three fillers commonly used in China for research. The pressurized aging vessel (PAV) and homemade ultraviolet (UV) aging equipment were used to perform thermo-oxidative aging and UV aging tests, respectively, of asphalt. The microcharacteristics of asphalt before and after aging were analyzed via attenuated total reflectance fourier transformation infrared spectroscopy and nuclear magnetic resonance 1H spectroscopy. The results show that the oil source of asphalt exerted the most significant influence on the microcharacteristics of the aged asphalt, while the effect of the asphalt grade was relatively limited. The addition of fillers did not affect the aging mechanism of asphalt. UV and PAV aging generated apparent differences in the changes in the aged asphalt microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Oldham D, Qu X, Wang HN, Fini EH (2020) Investigating change of polydispersity and rheology of crude oil and bitumen due to asphaltene oxidation. Energy Fuels 34(8):10299–10305. https://doi.org/10.1021/acs.energyfuels.0c01344

    Article  Google Scholar 

  2. Chen Z, Yi JY, Zhao H, Luan H, Xu M, Zhang LD, Feng DC (2021) Strength development and deterioration mechanisms of foamed asphalt cold recycled mixture based on MD simulation. Constr Buil Mater 269:121324. https://doi.org/10.1016/j.conbuildmat.2020.121324

    Article  Google Scholar 

  3. Zhou T, Cao LP, Fini EH, Li LW, Liu ZY, Dong ZJ (2020) Behaviors of asphalt under certain aging levels and effects of rejuvenation. Constr Buil Mater 249:118748. https://doi.org/10.1016/j.conbuildmat.2020.118748

    Article  Google Scholar 

  4. Hofko B, Porot L, Cannone AF, Poulikakos L, Huber L, Lu X, Mollenhauer K, Grothe H (2018) FTIR spectral analysis of bituminous binders: reproducibility and impact of ageing temperature. Mater Struct 51(2):45. https://doi.org/10.1617/s11527-018-1170-7

    Article  Google Scholar 

  5. Zhou L, Zhang Y, Liu BY (2021) Aging characteristics of asphalt binder under strong ultraviolet irradiation in Northwest China. Sustainability 13(19):10753. https://doi.org/10.3390/su131910753

    Article  Google Scholar 

  6. Hosseinnezhad S, Zadshir M, Yu XK, Yin HM, Sharma BK, Fini EH (2019) Differential effects of ultraviolet radiation and oxidative aging on bio-modified binders. Fuel 251:45–56. https://doi.org/10.1016/j.fuel.2019.04.029

    Article  Google Scholar 

  7. Feng ZG, Bian HJ, Li XJ, Yu JY (2016) FTIR analysis of UV aging on bitumen and its fractions. Mater Struct 49:1381–1389. https://doi.org/10.1617/s11527-015-0583-9

    Article  Google Scholar 

  8. Petersen JC, Barbour FA, Dorrence SM (1975) Identification of dicarboxylic anhydrides in oxidized asphalts. Anal Chem 47(1):107–111. https://doi.org/10.1021/ac60351a005

    Article  Google Scholar 

  9. Petersen JC, Plancher H (1981) Quantitative determination of carboxylic acids and their salts and anhydrides in asphalts by selective chemical reactions and differential infrared spectrometry. Anal Chem 53(6):786–789. https://doi.org/10.1021/ac00229a010

    Article  Google Scholar 

  10. Petersen JC, Glaser R (2011) Asphalt oxidation mechanisms and the role of oxidation products on age hardening revisited. Road Mater Pavement Des 12(4):795–819. https://doi.org/10.1080/14680629.2011.9713895

    Article  Google Scholar 

  11. Pahlavan F, Hung AM, Zadshir M, Hosseinnezhad S, Fini EH (2018) Alteration of π-electron distribution to induce deagglomeration in oxidized polar aromatics and asphaltenes in an aged asphalt binder. ACS Sustain Chem Eng 6(5):6554–6569. https://doi.org/10.1021/acssuschemeng.8b00364

    Article  Google Scholar 

  12. Alamdary YA, Singh S, Baaj H (2019) Laboratory simulation of the impact of solar radiation and moisture on long-term age conditioning of asphalt mixes. Road Mater Pavem Des 20(Suppl 1):S521–S532. https://doi.org/10.1080/14680629.2019.1587496

    Article  Google Scholar 

  13. Hung A, Fini EH (2020) Surface morphology and chemical mapping of UV-aged thin films of bitumen. ACS Sustain Chem Eng 8(31):11764–11771. https://doi.org/10.1021/acssuschemeng.0c03877

    Article  Google Scholar 

  14. Liu L, Liu ZH, Hong LL, Huang Y (2020) Effect of ultraviolet absorber (UV-531) on the properties of SBS-modified asphalt with different block ratios. Constr Buil Mater 234:117388. https://doi.org/10.1016/j.conbuildmat.2019.117388

    Article  Google Scholar 

  15. Shi HQ, Xu T, Jiang RL (2017) Combustion mechanism of four components separated from asphalt binder. Fuel 192:18–26. https://doi.org/10.1016/j.fuel.2016.11.110

    Article  Google Scholar 

  16. Xu M, Yi JY, Qi P, Wang H, Marasteanu M, Feng DC (2019) Improved chemical system for molecular simulations of asphalt. Energy Fuels 33:3187–3198. https://doi.org/10.1021/acs.energyfuels.9b00489

    Article  Google Scholar 

  17. Bhasin A, Ganesan V (2017) Preliminary investigation of using a multi-component phase field model to evaluate microstructure of asphalt binders. Int J Pavem Eng 18(9):775–782. https://doi.org/10.1080/10298436.2015.1065998

    Article  Google Scholar 

  18. Zupanick M, Baselice V (1997) Characterizing asphalt volatility. Transp Res Rec J Transp Res Board 1586:1–9. https://doi.org/10.3141/1586-01

    Article  Google Scholar 

  19. Sharma A, Groenzin H, Tomita A, Mullins OC (2002) Probing order in asphaltenes and aromatic ring systems by HRTEM. Energy Fuels 16(2):490–496. https://doi.org/10.1021/ef010240f

    Article  Google Scholar 

  20. Bao CH, Xu Y, Zheng CF, Nie L, Yang X (2022) Rejuvenation effect evaluation and mechanism analysis of rejuvenators on aged asphalt using molecular simulation. Mater Struct 55:52. https://doi.org/10.1617/s11527-022-01890-3

    Article  Google Scholar 

  21. Guern ML, Chailleux E, Farcas F, Dreessen S, Mabille I (2010) Physico-chemical analysis of five hard bitumens: identification of chemical species and molecular organization before and after artificial aging. Fuel 89(11):3330–3339. https://doi.org/10.1016/j.fuel.2010.04.035

    Article  Google Scholar 

  22. Wang F, Xiao Y, Cui PD, Lin JT, Li ML, Chen ZW (2020) Correlation of asphalt performance indicators and aging Degrees: a review. Constr Buil Mater 250:118824. https://doi.org/10.1016/j.conbuildmat.2020.118824

    Article  Google Scholar 

  23. Puello J, Afanasjeva N, Alvarez M (2013) Thermal properties and chemical composition of bituminous materials exposed to accelerated ageing. Road Mater Pavem Des 14(2):278–288. https://doi.org/10.1080/14680629.2013.785799

    Article  Google Scholar 

  24. Jing RX, Varveri A, Liu XY, Scarpas A, Erkens S (2021) Ageing effect on chemo-mechanics of bitumen. Road Mater Pavem Des 22(5):1044–1059. https://doi.org/10.1080/14680629.2019.1661275

    Article  Google Scholar 

  25. Hou XD, Liang B, Xiao FP, Wang JY, Wang T (2020) Characterizing asphalt aging behaviors and rheological properties based on spectrophotometry. Constr Buil Mater 256:119401. https://doi.org/10.1016/j.conbuildmat.2020.119401

    Article  Google Scholar 

  26. Jing RX, Varveri A, Liu XY, Scarpas A, Erkens S (2020) Rheological, fatigue and relaxation properties of aged bitumen. Inter J Pavem Eng 21(8):1024–1033. https://doi.org/10.1080/10298436.2019.1654609

    Article  Google Scholar 

  27. Li YY, Wu SP, Liu QT, Dai Y, Li CM, Li HC, Nie S, Song W (2019) Aging degradation of asphalt binder by narrow-band UV radiations with a range of dominant wavelengths. Constr Buil Mater 220:637–650. https://doi.org/10.1016/j.conbuildmat.2019.06.035

    Article  Google Scholar 

  28. Li YY, Wu SP, Liu QT, Xie J, Li HC, Dai Y, Li CM, Nie S, Song W (2019) Aging effects of ultraviolet lights with same dominant wavelength and different wavelength ranges on a hydrocarbon-based polymer (asphalt). Polym Test 75:64–75. https://doi.org/10.1016/j.polymertesting.2019.01.025

    Article  Google Scholar 

  29. Zeng WB, Wu SP, Pang L, Chen HH, Hu JX, Sun YH, Chen ZW (2018) Research on Ultra Violet (UV) aging depth of asphalts. Constr Buil Mater 160:620–627. https://doi.org/10.1016/j.conbuildmat.2017.11.047

    Article  Google Scholar 

  30. Li YY, Feng JL, Yang F, Wu SP, Liu QT, Bai T, Liu ZJ, Li CM, Gu DJ, Chen AQ, Jin YS (2021) Gradient aging behaviors of asphalt aged by ultraviolet lights with various intensities. Constr Buil Mater 295:123618. https://doi.org/10.1016/j.conbuildmat.2021.123618

    Article  Google Scholar 

  31. Xu M, Yi JY, Pei ZS, Feng DC, Huang YD, Yang Y (2017) Generation and evolution mechanisms of pavement asphalt aging based on variations in surface structure and micromechanical characteristics with AFM. Mater Today Commun 12:106–118. https://doi.org/10.1016/j.mtcomm.2017.07.006

    Article  Google Scholar 

  32. Chen ZH, Zhang HL, Duan HH (2020) Investigation of ultraviolet radiation aging gradient in asphalt binder. Constr Buil Mater 246:118501. https://doi.org/10.1016/j.conbuildmat.2020.118501

    Article  Google Scholar 

  33. Hosseinnezhad S, Hung AM, Mousavi M, Sharma BK, Fini EH (2020) Resistance mechanisms of biomodified binders against ultraviolet exposure. ACS Sustain Chem Eng 8(6):2390–2398. https://doi.org/10.1021/acssuschemeng.9b05490

    Article  Google Scholar 

  34. Sun L, Wang YY, Zhang YM (2014) Aging mechanism and effective recycling ratio of SBS modified asphalt. Constr Buil Mater 70:26–35. https://doi.org/10.1016/j.conbuildmat.2014.07.064

    Article  Google Scholar 

  35. Wang FS, Zhang L, Zhang XS, Li HC, Wu SP (2020) Aging mechanism and rejuvenating possibility of SBS copolymers in asphalt binders. Polymers 12(1):92. https://doi.org/10.3390/polym12010092

    Article  Google Scholar 

  36. Wang YY, Sun L, Qin YX (2015) Aging mechanism of SBS modified asphalt based on chemical reaction kinetics. Constr Buil Mater 91:47–56. https://doi.org/10.1016/j.conbuildmat.2015.05.014

    Article  Google Scholar 

  37. Zhu CZ, Zhang HL, Zhang DM, Chen ZH (2018) Influence of base asphalt and SBS modifier on the weathering aging behaviors of sbs modified asphalt. J Mater Civ Eng 30(3):04017306. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002188

    Article  Google Scholar 

  38. Wei CW, Duan HH, Zhang HL, Chen ZH (2019) Influence of SBS modifier on aging behaviors of SBS-modified asphalt. J Mater Civ Eng 31(9):04019184. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002832

    Article  Google Scholar 

  39. Islam SS, Ransinchung GDRN, Singh B, Singh SK (2022) Effect of short-term and long-term ageing on the elastic and creep behaviour of modified binder containing different SBS copolymer. Mater Struct 55:144. https://doi.org/10.1617/s11527-022-01902-2

    Article  Google Scholar 

  40. Zhang DM, Zhang HL, Shi CJ (2017) Investigation of aging performance of SBS modified asphalt with various aging methods. Constr Buil Mater 145:445–451. https://doi.org/10.1016/j.conbuildmat.2017.04.055

    Article  Google Scholar 

  41. AASHTO (2013) Standard method of test for effect of heat and air on a moving film of asphalt binder (rolling thin-film oven test). AASHTO T 240–2013 Washington, DC

  42. AASHTO (2012) Standard practice for accelerated aging of asphalt binder using a pressurized aging vessel (PAV). AASHTO R28–2012, Washington, DC

  43. Lamontagne J, Dumas P, Mouillet V, Kister J (2001) Comparison by Fourier transform infrared (FTIR) spectroscopy of different ageing techniques: application to road bitumens. Fuel 80(4):483–488. https://doi.org/10.1016/S0016-2361(00)00121-6

    Article  Google Scholar 

  44. Hofko B, Alavi MZ, Grothe H, Jones D, Harvey J (2017) Repeatability and sensitivity of FTIR ATR spectral analysis methods for bituminous binders. Mater Struct 50(3):187. https://doi.org/10.1617/s11527-017-1059-x

    Article  Google Scholar 

  45. Jing RX, Liu XY, Varveri A, Scarpas A, Erkens S (2018) The effect of ageing on chemical and mechanical properties of asphalt mortar. Appl Sci 8(11):2231. https://doi.org/10.3390/app8112231

    Article  Google Scholar 

  46. Christopher J, Sarpal AS, Kapur GS, Krishna A, Tyagi BR, Jain MC, Jain SK, Bhatnagar AK (1996) Chemical structure of bitumen-derived asphaltenes by nuclear magnetic resonance spectroscopy and X-ray diffractometry. Fuel 75(8):999–1008. https://doi.org/10.1016/0016-2361(96)00023-3

    Article  Google Scholar 

  47. Li GN, Tan YQ (2022) The construction and application of asphalt molecular model based on the quantum chemistry calculation. Fuel 308:122307. https://doi.org/10.1016/j.fuel.2021.122037

    Article  Google Scholar 

  48. Zhang MY, Hao PW, Dong S, Yuan GA (2020) Asphalt binder micro-characterization and testing approaches: a review. Constr Buil Mater 151:107255. https://doi.org/10.1016/j.measurement.2019.107255

    Article  Google Scholar 

  49. Khiavi AK, Ghanbari A, Ahmadi E (2021) Evaluation of poly 2-hydroxyethyl methacrylate—modified bitumen aging using NMR and FTIR techniques. J Transp Eng B-Pave 147(1):04020087. https://doi.org/10.1061/JPEODX.0000228

    Article  Google Scholar 

  50. Siddiqui MN (2009) NMR Fingerprinting of chemical changes in asphalt fractions on oxidation. Pet Sci Technol 27(17):2033–2045. https://doi.org/10.1080/10916460802668622

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Sciences Foundation of China (Nos. 51878229, 52178420), China Postdoctoral Science Foundation (2021M702293), Science and technology project of the Ministry of Housing and Urban Rural Development (2019-K-137), Special subsidy from Heilongjiang Provincial People's Government (HITTY-20190028), Key R & D projects in Liaoning Province (2020JH210300097), Harbin Science and technology project (2019CYJBCG0192).

Author information

Authors and Affiliations

Authors

Contributions

Data curation: ZP, MX; Formal analysis: JY, ZP, MX; Investigation: ZP, WH, JR; Methodology: JY, DF, RJ; Project administration: JY, DF, JC; Resources: JY, JC, DF; Supervision: DF, JY; Writing – original draft: ZP, JY, MX.

Corresponding author

Correspondence to Junyan Yi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, Z., Xu, M., Cao, J. et al. Analysis of the microcharacteristics of different kinds of asphalt based on different aging conditions. Mater Struct 55, 250 (2022). https://doi.org/10.1617/s11527-022-02088-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-022-02088-3

Keywords

Navigation