Skip to main content
Log in

Janka hardness of hardwood species evaluated by the nondestructive sclerometric method

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The physical and mechanical properties are essential to exploring the potential applications of each wood species. Janka hardness allows us to identify the wood’s workability and durability characteristics. Regarding evaluations of wood pieces for construction, estimating this mechanical property by nondestructive testing (NDT), and dismissing the extraction of specimens is of great interest. In this context, this study aimed to evaluate correlations between Janka hardness and the sclerometric index. These properties were obtained by testing four hardwood species, in both the parallel and perpendicular directions to the grain on wood pieces under saturated and air-dried conditions. The correlations between Janka hardness and sclerometric index resulted in increasing linear functions and were affected by the moisture conditions of the pieces, with the highest correlation coefficients obtained for air-dried wood and in the direction parallel to the grain. The sclerometric method was shown to be a potential NDT for estimating the Janka hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hirata S, Ohta M, Honma Y (2001) Hardness distribution on wood surface. J Wood Sci 47:1–7. https://doi.org/10.1007/BF00776637

    Article  Google Scholar 

  2. Lykidis C, Nikolakakos M, Sakellariou E, Birbilis D (2016) Assessment of a modification to the Brinell method for determining solid wood hardness. Mater Struct 49:961–967. https://doi.org/10.1617/s11527-015-0551-4

    Article  Google Scholar 

  3. Korkut S, Guller B (2008) Physical and mechanical properties of European hophornbeam (Ostrya carpinifolia Scop.) wood. Bioresour Technol 99:4780–4785. https://doi.org/10.1016/j.biortech.2007.09.058

    Article  Google Scholar 

  4. Lahr FAR, Chahud E, Fernandes RA, Teixeira RS (2010) Tropical woods: influence of density in hardness parallel and normal to the grain for some Brazilian tropical tree species. Sci For 38:153–158

    Google Scholar 

  5. Silva F, Higuchi N, Nascimento CC, Matos JLM, Paula EVCM, Santos J (2014) Nondestructive evaluation of hardness in tropical wood. J Trop For Sci 26:69–74

    Google Scholar 

  6. Peng H, Jiang J, Zhan T, Lu J (2016) Influence of density and equilibrium moisture content on the hardness anisotropy of wood. For Prod J 66:443–452. https://doi.org/10.13073/FPJ-D-15-00072

    Article  Google Scholar 

  7. Uzcategui MGC, Seale RD, França FJN (2020) Physical and mechanical properties of clear wood from red oak and white oak. BioRes 15:4960–4971. https://doi.org/10.15376/biores.15.3.4960-4971

    Article  Google Scholar 

  8. Shahin S, Ayata U, Bal BC, Esteves B, Can A, Sivrikaya H (2020) Determination of some wood properties and response to weathering of Citrus limon (L.) Burm wood. BioRes 15:6840–6850. https://doi.org/10.15376/biores.15.3.6840-6850

    Article  Google Scholar 

  9. Shirmohammadi M, Faircloth A, Redman A (2020) Determining acoustic and mechanical properties of Australian native hardwood species for guitar fretboard production. Eur J Wood Wood Prod 78:1161–1171. https://doi.org/10.1007/s00107-020-01599-6

    Article  Google Scholar 

  10. Doyle J, Walker JCF (1985) Indentation hardness of wood. Wood Fiber Sci 17:369–376

    Google Scholar 

  11. Scharf A, Neyses B, Sandberg D (2022) Hardness of surface-densified wood Part 1: material or product property? Holzforschung 76(6):503–514

    Article  Google Scholar 

  12. Koczan G, Karwat Z, Kozakiewicz P (2021) An attempt to unify the Brinell, Janka and Monnin hardness of wood on the basis of Meyer law. J Wood Sci. https://doi.org/10.1186/s10086-020-01938-4

    Article  Google Scholar 

  13. Riggio M, Piazza M (2010) Hardness test. In: Kasal B, Tannert T (eds) In Situ Assessment of structural timber, RILEM State of the Art Reports. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0560-9_10

    Chapter  Google Scholar 

  14. Holmberg H (2000) Influence of grain angle on Brinell hardness of Scots pine (Pinus sylvestris L.). Holz als Roh-und Werkstoff 58:91–95. https://doi.org/10.1007/s001070050392

    Article  Google Scholar 

  15. Wiemann MC, Green DW (2007) Wiemann MC, Green DW (2007) Estimating Janka hardness from specific gravity for tropical and temperate species. Research paper FPL-RP-643. Forest Products Laboratory, Madison

  16. Couto AM, Trugilho PF, Neves TA, Protássio TP, Sá VA (2013) Modeling of basic density of wood from Eucalyptus grandis and Eucalyptus urophylla using nondestructive methods. Cerne 19:27–34. https://doi.org/10.1590/S0104-77602013000100004

    Article  Google Scholar 

  17. Martínez R, Calvo J, Arriaga F, Bobadilla I (2017) In situ density estimation of timber pieces by drilling residue analysis. Eur J Wood Wood Prod 76:509–515. https://doi.org/10.1007/s00107-017-1214-7

    Article  Google Scholar 

  18. ABNT (1997) NBR 7190: Design of wooden structures. ABNT Brazilian Technical Standards Association, Rio de Janeiro (in Portuguese)

    Google Scholar 

  19. ASTM (2000) D143–94: Standard test methods for small clear specimens of timber. American Society for Testing Materials, West Conshohocken, PA

    Google Scholar 

  20. Faggiano B, Marzo A (2015) A method for the determination of the timber density through the statistical assessment of ND transverse measurements aimed at in situ mechanical identification of existing timber structures. Constr Build Mater 101:1235–1240. https://doi.org/10.1016/j.conbuildmat.2015.08.088

    Article  Google Scholar 

  21. Osuna-Sequera C, Llana DF, Esteban M, Arriaga F (2019) Improving density estimation in large cross-section timber from existing structures optimizing the number of non-destructive measurements. Constr Build Mater 211:199–206. https://doi.org/10.1016/j.conbuildmat.2019.03.144

    Article  Google Scholar 

  22. Romano N, Lignola GP, Brigante M, Bosso L, Chirico GB (2016) Residual life and degradation assessment of wood elements used in soil bioengineering structures for slope protection. Ecol Eng 90:498–509. https://doi.org/10.1016/j.ecoleng.2016.01.085

    Article  Google Scholar 

  23. Kloiber M, Drdácký M, Machado JS, Piazza M, Yamaguchi N (2015) Prediction of mechanical properties by means of semi-destructive methods: a review. Constr Build Mater 101:1215–1234. https://doi.org/10.1016/j.conbuildmat.2015.05.134

    Article  Google Scholar 

  24. Jaskowska-Lemańska J, Przesmycka E (2021) Semi-destructive and non-destructive tests of timber structure of various moisture contents. Mater 14:1–22. https://doi.org/10.3390/ma14010096

    Article  Google Scholar 

  25. Tannert T, Anthony RW, Kasal B, Kloiber M, Piazza M, Riggio M, Rinn F, Widmann R, Yamaguchi N (2014) In situ assessment of structural timber using semi-destructive techniques. Mater Struct 47:767–785. https://doi.org/10.1617/s11527-013-0094-5

    Article  Google Scholar 

  26. Wu S, Xu J, Li G, Risto V, Lu Z, Li B, Wang W (2010) Use of the pilodyn for assessing wood properties in standing trees of Eucalyptus clones. J For Res 21:68–72. https://doi.org/10.1007/s11676-010-0011-5

    Article  Google Scholar 

  27. Acuña L, Basterra LA, Casado MM, López G, Ramón-Cueto G, Relea E, Martínez C, González A (2011) Application of resistograph to obtain the density and to differentiate wood species. Mater Constr 61:451–464. https://doi.org/10.3989/mc.2010.57610

    Article  Google Scholar 

  28. Bobadilla I, Martínez RD, Esteban M, Llana DF (2018) Estimation of wood density by the core drilling technique. Holzforschung 72:1051–1056. https://doi.org/10.1515/hf-2018-0036

    Article  Google Scholar 

  29. Jaskowska-Lemańska J, Walach D (2016) Impact of the direction of non-destructive test with respect to the annual growth rings of pine wood. Procedia Eng 161:925–930. https://doi.org/10.1016/j.proeng.2016.08.761

    Article  Google Scholar 

  30. Nowak TP, Jasieńko J, Hamrol-Bielecka K (2016) In situ assessment of structural timber using the resistance drilling method–evaluation of usefulness. Constr Build Mater 102:403–415. https://doi.org/10.1016/j.conbuildmat.2015.11.004

    Article  Google Scholar 

  31. Ballarin AW, Assis AA, Alexandre R (2015) Development of an automated portable tester for evaluating dynamic hardness of wood. In: Proceedings of the 19th international nondestructive testing and evaluation of wood symposium; 2015 Sep 22–25, Rio de Janeiro, Brazil. Forest Products Laboratory p 131–139

  32. Assis AA, Alexandre RP, Ballarin AW (2017) Dynamic hardness of wood-measurements with an automated portable hardness tester. Holzforschung 71:383–389. https://doi.org/10.1515/hf-2016-0137

    Article  Google Scholar 

  33. ASTM (2013) C805/C805M-13a: Standard test method for rebound number of hardened concrete. American Society for Testing Materials, West Conshohocken, PA

    Google Scholar 

  34. ABNT (2012) NBR 7584: Hardened concrete - evaluation of surface hardness by reflecting sclerometer - test method. ABNT Brazilian Technical Standards Association, Rio de Janeiro ([in Portuguese])

    Google Scholar 

  35. Soriano J, Veiga NS, Martins IZ (2015) Wood density estimation using the sclerometric method. Eur J Wood Wood Prod 73:1–6. https://doi.org/10.1007/s00107-015-0948-3

    Article  Google Scholar 

  36. Szostak B, Trochonowicz M, Kowalczyk M (2020) Determination of the strength parameters of pinewood based on the non-destructive sclerometric test with a wood hammer. Civ Environ Eng Rep 30:43–52. https://doi.org/10.2478/ceer-2020-0004

    Article  Google Scholar 

  37. Forest Products Laboratory (2010) Wood handbook—Wood as an engineering material. General technical report FPL-GTR-190. Forest Products Laboratory, Madison

  38. Shmulsky R, Jones PD (2011) Forest products and wood science: an introduction. Wiley-Blackwell, Hoboken. https://doi.org/10.1002/9780470960035

    Book  Google Scholar 

  39. Wang Y, Su M, Sun H, Ren H (2018) Comparative studies on microstructures and chemical compositions of cell walls of two solid wood floorings. J Wood Sci 64:501–508. https://doi.org/10.1007/s10086-018-1743-7

    Article  Google Scholar 

  40. Carvalho G, Silva LGA (2014) Study of Brazilian woods using Gamma-ray sources. J Phys Sci App 4:304–309

    Google Scholar 

  41. Soriano J, Gonçalves R, Bertoldo C, Trinca AJ (2011) Application of sclerometeric test method in pieces of Eucalyptus saligna. Rev Bras de Eng Agricola e Ambient 15:322–328. https://doi.org/10.1590/S1415-43662011000300015

    Article  Google Scholar 

  42. Mascarenhas ARP, Sccoti MSV, Melo RR, Corrêa FLO, Souza EFM, Pimenta AS (2021) Physico-mechanical properties of the wood of freijó, Cordia goeldiana (Boraginacea), produced in a multi-stratified agroforestry system in the southwestern Amazon. Acta Amazon 51:171–180. https://doi.org/10.1590/1809-4392202003001

    Article  Google Scholar 

  43. Khademibami L, Shmulsky R, Snow D, Sherrington A, Montague I, Ross RJ, Wang X (2022) Wear Resistance and hardness assessment of five US hardwoods for bridge decking and truck flooring. For Prod J 72(s1):8–13. https://doi.org/10.13073/FPJ-D-21-00074

    Article  Google Scholar 

  44. Silva Filho DF, Rocha JS, Moura JB (1992) Influência da densidade na dureza Janka em oito espécies madeireiras da Amazônia Central. Acta Amazon 22(2):275–283 ([in Portuguese])

    Article  Google Scholar 

  45. Alves RC, Motta PJ, Bremer CF, Mantilla JNR, Carrasco EVM (2013) Application of the nondestructive method of drill resistance for determination of the strength of Brazilian tropical woods. Int J Eng Technol 13:69–73

    Google Scholar 

  46. Iniguez-Gonzalez G, Monton J, Arriaga F, Segues E (2015) In-situ assessment of structural timber density using non-destructive and semi-destructive testing. BioResources 10(2):2256–2265. https://doi.org/10.15376/biores.10.2.2256-2265

    Article  Google Scholar 

  47. Khosravi E, Roohnia M, Lashgari A, Jahanlatibari A, Tajdini A (2021) Evaluation of pin penetration probing technique for the assessment of basic density in air-dried wood. BioResources 16(4):6577–6586. https://doi.org/10.15376/biores.16.4.6577-6586

    Article  Google Scholar 

  48. Forest Products Laboratory (2014) Wood and timber condition assessment—manual. General technical report FPL-GTR-234. Forest Products Laboratory, Madison

  49. Hasníková H, Kuklík P (2014) Various non-destructive methods for investigation of timber members from a historical structure. Wood Research 59(3):411–420

    Google Scholar 

  50. Almeida TH, Sardela M, Lahr FAR (2019) X-ray diffraction on aged Brazilian wood species. Mater Sci Eng B, 246:96–103. https://www.sciencedirect.com/science/article/pii/S092151071930159X

Download references

Acknowledgements

This study was funded by the Coordination for the Improvement of Higher Education, Brazil (CAPES), funding code 001. The authors would like to thank the support from the National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Soriano.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, I.Z., Deldotti, L.R., Soriano, J. et al. Janka hardness of hardwood species evaluated by the nondestructive sclerometric method. Mater Struct 55, 227 (2022). https://doi.org/10.1617/s11527-022-02064-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-022-02064-x

Keywords

Navigation