Skip to main content
Log in

Calcined palygorskite and smectite bearing marlstones as supplementary cementitious materials

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This article focuses on the use of two calcined marlstones as supplementary cementitious materials, one with palygorskite and smectite (MS1) as clay phases and the other with smectite only (MS2). The calcination and the reactivity of these two materials were first analysed by X-ray diffraction (XRD) and Magic Angle Spinning Solid State Nuclear Magnetic Resonance (MAS NMR). The two calcined marlstones were combined with Portland cement to produce mortars and measure compressive strength. The XRD and 27Al MAS NMR results showed that 800 °C is an optimal calcination temperature and that both calcined marlstones can be used as supplementary cementitious materials. The reactivity of MS1 was found to be higher than that of MS2. This was confirmed with compressive strength measurements which showed superior performance for mortars blended with calcined MS1 rather than calcined MS2. This difference between MS1 and MS2 is due to the presence of palygorskite in MS1, which greatly improves the reactivity and final mechanical performances. Therefore, palygorskite bearing marlstones are suitable for a use as SCM and this suggests that palygorskite exhibits a significant pozzolanic reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huntzinger DN, Eatmon TD (2009) A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. J Clean Prod 17:668–675. https://doi.org/10.1016/j.jclepro.2008.04.007

    Article  Google Scholar 

  2. Scrivener KL, John VM, Gartner EM (2018) Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem Concr Res 114:2–26. https://doi.org/10.1016/j.cemconres.2018.03.015

    Article  Google Scholar 

  3. Escalante JI, Gómez LY, Johal KK et al (2001) Reactivity of blast-furnace slag in Portland cement blends hydrated under different conditions. Cem Concr Res 31:1403–1409. https://doi.org/10.1016/S0008-8846(01)00587-7

    Article  Google Scholar 

  4. Yazıcı H, Yardımcı MY, Yiğiter H et al (2010) Mechanical properties of reactive powder concrete containing high volumes of ground granulated blast furnace slag. Cement Concr Compos 32:639–648. https://doi.org/10.1016/j.cemconcomp.2010.07.005

    Article  Google Scholar 

  5. Sakai E, Miyahara S, Ohsawa S et al (2005) Hydration of fly ash cement. Cem Concr Res 35:1135–1140. https://doi.org/10.1016/j.cemconres.2004.09.008

    Article  Google Scholar 

  6. Yao ZT, Ji XS, Sarker PK et al (2015) A comprehensive review on the applications of coal fly ash. Earth Sci Rev 141:105–121. https://doi.org/10.1016/j.earscirev.2014.11.016

    Article  Google Scholar 

  7. Hu X, Shi C, Shi Z, Zhang L (2019) Compressive strength, pore structure and chloride transport properties of alkali-activated slag/fly ash mortars. Cement Concr Compos 104:103392. https://doi.org/10.1016/j.cemconcomp.2019.103392

    Article  Google Scholar 

  8. Alujas A, Fernández R, Quintana R et al (2015) Pozzolanic reactivity of low grade kaolinitic clays: Influence of calcination temperature and impact of calcination products on OPC hydration. Appl Clay Sci 108:94–101. https://doi.org/10.1016/j.clay.2015.01.028

    Article  Google Scholar 

  9. Almenares RS, Vizcaíno LM, Damas S et al (2017) Industrial calcination of kaolinitic clays to make reactive pozzolans. Case Studies in Construction Materials 6:225–232. https://doi.org/10.1016/j.cscm.2017.03.005

    Article  Google Scholar 

  10. El-Diadamony H, Amer AA, Sokkary TM, El-Hoseny S (2018) Hydration and characteristics of metakaolin pozzolanic cement pastes. HBRC Journal 14:150–158. https://doi.org/10.1016/j.hbrcj.2015.05.005

    Article  Google Scholar 

  11. Zhao D, Khoshnazar R (2020) Microstructure of cement paste incorporating high volume of low-grade metakaolin. Cement Concr Compos 106:103453. https://doi.org/10.1016/j.cemconcomp.2019.103453

    Article  Google Scholar 

  12. Brown IW, MacKenzie KJ, Meinhold RH (1987) The thermal reactions of montmorillonite studied by high-resolution solid-state29Si and27Al NMR. J Mater Sci 22(9):3265–3275

    Article  Google Scholar 

  13. Garg N, Skibsted J (2014) Thermal activation of a pure montmorillonite clay and its reactivity in cementitious systems. J Phys Chem C 118:11464–11477. https://doi.org/10.1021/jp502529d

    Article  Google Scholar 

  14. Kaminskas R, Kubiliute R, Prialgauskaite B (2020) Smectite clay waste as an additive for Portland cement. Cement Concr Compos 113:103710. https://doi.org/10.1016/j.cemconcomp.2020.103710

    Article  Google Scholar 

  15. Fernandez R, Martirena F, Scrivener KL (2011) The origin of the pozzolanic activity of calcined clay minerals: a comparison between kaolinite, illite and montmorillonite. Cem Concr Res 41:113–122. https://doi.org/10.1016/j.cemconres.2010.09.013

    Article  Google Scholar 

  16. Taylor-Lange SC, Rajabali F, Holsomback NA et al (2014) The effect of zinc oxide additions on the performance of calcined sodium montmorillonite and illite shale supplementary cementitious materials. Cement Concr Compos 53:127–135. https://doi.org/10.1016/j.cemconcomp.2014.06.008

    Article  Google Scholar 

  17. Garg N, Skibsted J (2016) Pozzolanic reactivity of a calcined interstratified illite/smectite (70/30) clay. Cem Concr Res 79:101–111. https://doi.org/10.1016/j.cemconres.2015.08.006

    Article  Google Scholar 

  18. Cancio Díaz Y, Sánchez Berriel S, Heierli U et al (2017) Limestone calcined clay cement as a low-carbon solution to meet expanding cement demand in emerging economies. Develop Eng 2:82–91. https://doi.org/10.1016/j.deveng.2017.06.001

    Article  Google Scholar 

  19. Scrivener K, Martirena F, Bishnoi S, Maity S (2018) Calcined clay limestone cements (LC3). Cem Concr Res 114:49–56. https://doi.org/10.1016/j.cemconres.2017.08.017

    Article  Google Scholar 

  20. He C, Makovicky E, Osbæck B (1996) Thermal treatment and pozzolanic activity of sepiolite. Appl Clay Sci 10:337–349. https://doi.org/10.1016/0169-1317(95)00035-6

    Article  Google Scholar 

  21. He C, Osbaeck B, Makovicky E (1995) Pozzolanic reactions of six principal clay minerals: activation, reactivity assessments and technological effects. Cem Concr Res 25:1691–1702. https://doi.org/10.1016/0008-8846(95)00165-4

    Article  Google Scholar 

  22. Justnes H, Østnor T, De Weerdt K, Vikan H (2011) Calcined marl and clay as mineral addition for more sustainable concrete structure. In Proceedings of the 36th Conference on Our World in Concrete & Structures, Singapore, 14–16

  23. Danner T, Norden G, Justnes H (2018) Characterisation of calcined raw clays suitable as supplementary cementitious materials. Appl Clay Sci 162:391–402. https://doi.org/10.1016/j.clay.2018.06.030

    Article  Google Scholar 

  24. Bullerjahn F, Zajac M, Pekarkova J, Nied D (2020) Novel SCM produced by the co-calcination of aluminosilicates with dolomite. Cem Concr Res 134:106083. https://doi.org/10.1016/j.cemconres.2020.106083

    Article  Google Scholar 

  25. Mohammed S, Elhem G, Mekki B (2016) Valorization of pozzolanicity of Algerian clay: optimization of the heat treatment and mechanical characteristics of the involved cement mortars. Appl Clay Sci 132–133:711–721. https://doi.org/10.1016/j.clay.2016.08.027

    Article  Google Scholar 

  26. Danner T, Norden G, Justnes H (2021) Calcareous smectite clay as a pozzolanic alternative to kaolin. Eur J Environ Civ Eng 25:1647–1664. https://doi.org/10.1080/19648189.2019.1590741

    Article  Google Scholar 

  27. Bahhou A, Taha Y, Khessaimi YE et al (2021) Using calcined marls as non-common supplementary cementitious materials—a critical review. Minerals 11:517. https://doi.org/10.3390/min11050517

    Article  Google Scholar 

  28. Poussardin V, Paris M, Wilson W, Tagnit-Hamou A, Deneele D (2022) Self-reactivity of a calcined palygorskite-bearing marlstone for potential use as supplementary cementitious material. Appl Clay Sci 216:106372

    Article  Google Scholar 

  29. Poussardin V, Paris M, Tagnit-Hamou A, Deneele D (2020) Potential for calcination of a palygorskite-bearing argillaceous carbonate. Appl Clay Sci 198:105846. https://doi.org/10.1016/j.clay.2020.105846

    Article  Google Scholar 

  30. Poussardin V, Paris M, Wilson W et al (2022) Self-reactivity of a calcined palygorskite-bearing marlstone for potential use as supplementary cementitious material. Appl Clay Sci 216:106372. https://doi.org/10.1016/j.clay.2021.106372

    Article  Google Scholar 

  31. Ferraz E, Andrejkovicova S, Hajjaji W, Velosa AL, Silva AS, Rocha F (2015) Pozzolanic activity of metakaolins by the French standard of the modified Chapelle test: a direct methology. Acta Geodyn et Geomaterialia 12(3):289–298. https://doi.org/10.13168/AGG.2015.0026

    Article  Google Scholar 

  32. Avet F, Snellings R, Alujas Diaz A et al (2016) Development of a new rapid, relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic clays. Cem Concr Res 85:1–11. https://doi.org/10.1016/j.cemconres.2016.02.015

    Article  Google Scholar 

  33. Doebelin N, Kleeberg R (2015) Profex: a graphical user interface for the Rietveld refinement program BGMN. J Appl Crystallogr 48:1573–1580. https://doi.org/10.1107/S1600576715014685

    Article  Google Scholar 

  34. Massiot D, Fayon F, Capron M et al (2002) Modelling one- and two-dimensional solid-state NMR spectra: modelling 1D and 2D solid-state NMR spectra. Magn Reson Chem 40:70–76. https://doi.org/10.1002/mrc.984

    Article  Google Scholar 

  35. C01 Committee Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). ASTM International

  36. Bala P, Samantaray BK, Srivastava SK (2000) Dehydration transformation in Ca-montmorillonite. Bull Mater Sci 23:61–67. https://doi.org/10.1007/BF02708614

    Article  Google Scholar 

  37. Morodome S, Kawamura K (2009) Swelling behavior of Na- and Ca-Montmorillonite up to 150°C by in situ X-ray diffraction experiments. Clays Clay Miner 57:150–160. https://doi.org/10.1346/CCMN.2009.0570202

    Article  Google Scholar 

  38. Xie J, Chen T, Xing B et al (2016) The thermochemical activity of dolomite occurred in dolomite–palygorskite. Appl Clay Sci 119:42–48. https://doi.org/10.1016/j.clay.2015.07.014

    Article  Google Scholar 

  39. Maia AÁB, Angélica RS, de Freitas NR et al (2014) Use of 29Si and 27Al MAS NMR to study thermal activation of kaolinites from Brazilian Amazon kaolin wastes. Appl Clay Sci 87:189–196. https://doi.org/10.1016/j.clay.2013.10.028

    Article  Google Scholar 

  40. Sanz J, Serratosa JM (1984) Silicon-29 and aluminum-27 high-resolution MAS-NMR spectra of phyllosilicates. J Am Chem Soc 106:4790–4793. https://doi.org/10.1021/ja00329a024

    Article  Google Scholar 

  41. Müller D, Gessner W, Samoson A, Lippmaa E, Scheler G (1986) Solid-state aluminium-27 nuclear magnetic resonance chemical shift and quadrupole coupling data for condensed AlO 4 tetrahedra. J Chem Soc Dalton Trans 6:1277–1281

    Article  Google Scholar 

  42. Lippmaa E, Maegi M, Samoson A et al (1980) Structural studies of silicates by solid-state high-resolution silicon-29 NMR. J Am Chem Soc 102:4889–4893. https://doi.org/10.1021/ja00535a008

    Article  Google Scholar 

  43. Mackenzie KJD, Brown IWM, Cardile CM, Meinhold RH (1987) The thermal reactions of muscovite studied by high-resolution solid-state 29-Si and 27-Al NMR. J Mater Sci 22:2645–2654. https://doi.org/10.1007/BF01082158

    Article  Google Scholar 

  44. Kuang W, Facey GA, Detellier C (2004) Dehydration and rehydration of palygorskite and the influence of water on the nanopores. Clays Clay Miner 52:635–642. https://doi.org/10.1346/CCMN.2004.0520509

    Article  Google Scholar 

  45. Barron PF, Frost RL, Qlil N (1985) Solid state 29Si NMR examination of the 2:1 ribbon magnesium silicates, sepiolite and palygorskite. Am Miner 70:758–766

    Google Scholar 

  46. MacKenzie KJD, Smith ME (2002) Multinuclear solid-state NMR of Inorganic Materials. Elsiever, Berlin

    Google Scholar 

  47. Skibsted J, Jakobsen HJ, Hall C (1995) Quantification of calcium silicate phases in Portland cements by 29Si MAS NMR spectroscopy. J Chem Soc, Faraday Trans 91:4423. https://doi.org/10.1039/ft9959104423

    Article  Google Scholar 

  48. Cherney EA, Hooton RD (1987) Cement growth failure mechanism in porcelain suspension insulators. IEEE Trans Power Delivery 2:249–255. https://doi.org/10.1109/TPWRD.1987.4308096

    Article  Google Scholar 

  49. Magi M, Lippmaa E, Samoson A et al (1984) Solid-state high-resolution silicon-29 chemical shifts in silicates. J Phys Chem 88:1518–1522. https://doi.org/10.1021/j150652a015

    Article  Google Scholar 

  50. Andersen MD, Jakobsen HJ, Skibsted J (2004) Characterization of white Portland cement hydration and the C-S-H structure in the presence of sodium aluminate by 27Al and 29Si MAS NMR spectroscopy. Cem Concr Res 34:857–868. https://doi.org/10.1016/j.cemconres.2003.10.009

    Article  Google Scholar 

  51. Shoval S (1988) Mineralogical changes upon heating calcitic and dolomitic marl rocks. Thermochim Acta 135:243–252. https://doi.org/10.1016/0040-6031(88)87393-3

    Article  Google Scholar 

  52. Hughes DC, Jaglin D, Kozłowski R, Mucha D (2009) Roman cements — Belite cements calcined at low temperature. Cem Concr Res 39:77–89. https://doi.org/10.1016/j.cemconres.2008.11.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitri Deneele.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poussardin, V., Paris, M., Wilson, W. et al. Calcined palygorskite and smectite bearing marlstones as supplementary cementitious materials. Mater Struct 55, 224 (2022). https://doi.org/10.1617/s11527-022-02053-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-022-02053-0

Keywords

Navigation