Skip to main content

Advertisement

Log in

Physicochemical properties of Portland cement/calcium aluminate cement/calcium sulfate ternary binder exposed to long-term deep-sea conditions

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Cementitious materials employed in deep-sea marine engineering must have excellent durability and fast setting for in-situ construction. In this study, the durability of a ternary binder mortar composed of Portland cement, calcium aluminate cement, and anhydrite was investigated after deep-sea exposure at a depth of 1680 m for 608 d and compared to a tap-water-immersed specimen. The recovered mortar showed significant expansion. However, the hydrate phases in the ternary binder exhibited no changes with the exception of the formation of Friedel’s and Kuzel’s salts. One reason for this was the transformation from unstable monosulfate to stable ettringite under low-temperature seawater conditions. However, the additional ettringite formation could lead to significant expansion of the sample and strength reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Toro N, Robles P, Jeldres RI (2020) Seabed mineral resources, an alternative for the future of renewable energy: a critical review. Ore Geol Rev 126:103699. https://doi.org/10.1016/j.oregeorev.2020.103699

    Article  Google Scholar 

  2. Wade BS, O’Neill JF, Phujareanchaiwon C, Ali I, Lyle M, Witkowski J (2020) Evolution of deep-sea sediments across the Paleocene-Eocene and Eocene-Oligocene boundaries. Earth Sci Rev 211:103403. https://doi.org/10.1016/j.earscirev.2020.103403

    Article  Google Scholar 

  3. Araki E et al (2017) Recurring and triggered slow-slip events near the trench at the Nankai Trough subduction megathrust. Science 356(6343):1157–1160. https://doi.org/10.1126/science.aan3120

    Article  Google Scholar 

  4. Wilhelm S, Curbach M (2017) Experimental and nonlinear numerical analysis of underwater housings for the deep sea, made of ultra-high performance concrete. Struct Concr 18(1):216–224. https://doi.org/10.1002/suco.201600018

    Article  Google Scholar 

  5. Takahashi K et al (2021) Action of hydraulic pressure on Portland cement mortars – Current understanding and related progress of the first-ever in-situ deep sea tests at a 3515 m depth. ACT 19(3):226–239. https://doi.org/10.3151/jact.19.226

    Article  Google Scholar 

  6. Sonebi M, Tamimi AK, Bartos PJM (2000) Application of factorial models to predict the effect of anti-washout admixture, superplasticizer and cement on slump, flow time and washout resistance of underwater concrete. Mat Struct 33(5):317–323. https://doi.org/10.1007/BF02479702

    Article  Google Scholar 

  7. Ali Sikandar M, Wazir NR, Khan A, Nasir H, Ahmad W, Alam M (2020) Effect of various anti-washout admixtures on the properties of non-dispersible underwater concrete. Constr Build Mater 245:118469. https://doi.org/10.1016/j.conbuildmat.2020.118469

    Article  Google Scholar 

  8. Mather B (1964) Effect of sea water on concrete. Symp Eff Aggress Fluids Concr Proc Hyg Res Rec Number 113:33–42

    Google Scholar 

  9. Buenfeld NR, Newman JB (1986) The development and stability of surface layers on concrete exposed to sea-water. Cem Concr Res 16(5):721–732. https://doi.org/10.1016/0008-8846(86)90046-3

    Article  Google Scholar 

  10. Mehta PK (1991) Concrete in the marine environment. CRC Press

    Book  Google Scholar 

  11. Mohammed TU, Hamada H, Yamaji T (2003) Marine durability of 30-year old concrete made with different cements. ACT 1(1):63–75. https://doi.org/10.3151/jact.1.63

    Article  Google Scholar 

  12. Sibbick T, Fenn D, Crammond N (2003) The occurrence of thaumasite as a product of seawater attack. Cem Concr Compos 25(8):1059–1066. https://doi.org/10.1016/S0958-9465(03)00128-8

    Article  Google Scholar 

  13. De Weerdt K, Justnes H (2015) The effect of sea water on the phase assemblage of hydrated cement paste. Cem Concr Compos 55:215–222. https://doi.org/10.1016/j.cemconcomp.2014.09.006

    Article  Google Scholar 

  14. Jakobsen UH, De Weerdt K, Geiker MR (2016) Elemental zonation in marine concrete. Cem Concr Res 85:12–27. https://doi.org/10.1016/j.cemconres.2016.02.006

    Article  Google Scholar 

  15. Yi Y, Zhu D, Guo S, Zhang Z, Shi C (2020) A review on the deterioration and approaches to enhance the durability of concrete in the marine environment. Cem Concr Compos 113:103695. https://doi.org/10.1016/j.cemconcomp.2020.103695

    Article  Google Scholar 

  16. De Weerdt K, Justnes H, Geiker MR (2014) Changes in the phase assemblage of concrete exposed to sea water. Cem Concr Compos 47:53–63. https://doi.org/10.1016/j.cemconcomp.2013.09.015

    Article  Google Scholar 

  17. Kobayashi M, Takahashi K, Kawabata Y (2021) Physicochemical properties of the Portland cement-based mortar exposed to deep seafloor conditions at a depth of 1680 m. Cem Concr Res 142:106335. https://doi.org/10.1016/j.cemconres.2020.106335

    Article  Google Scholar 

  18. Aitcin PC, Blais F, George CM (1995) Durability of calcium aluminate cement concrete: assessment of concrete from a 60-year old marine structure at Halifax. NS, Canada, pp 145–168

    Google Scholar 

  19. Garcés P, Alcocel EG, Chinchón S, Andreu CG, Alcaide J (1997) Effect of curing temperature in some hydration characteristics of calcium aluminate cement compared with those of Portland cement. Cem Concr Res 27(9):1343–1355. https://doi.org/10.1016/S0008-8846(97)00136-1

    Article  Google Scholar 

  20. Scrivener KL, Cabiron J-L, Letourneux R (1999) High-performance concretes from calcium aluminate cements. Cem Concr Res 29(8):1215–1223. https://doi.org/10.1016/S0008-8846(99)00103-9

    Article  Google Scholar 

  21. Tazawa E, Miyazawa S (1995) Influence of cement and admixture on Autogenous shrinkage of cement paste. Cem Concr Res 25(2):281–287. https://doi.org/10.1016/0008-8846(95)00010-0

    Article  Google Scholar 

  22. Ukraincayk N (2014) Chemical shrinkage during hydration reactions of calcium aluminate cement. Austin J Chem Eng 1(3):1–7

    Google Scholar 

  23. Lamberet S (2005) Durability of ternary binders based on Portland cement, calcium aluminate cement and calcium sulfate. EPFL, Dissertation, Lusanne, Switzerland. https://doi.org/10.5075/EPFL-THESIS-3151

  24. Bier TA (2017) Composition and properties of ternary binders. In: Pöllmann H (ed) Cementitious materials. De Gruyter, Berlin, Boston, pp 353–376

    Chapter  Google Scholar 

  25. Technical standards and commentaries OCDI. http://ocdi.or.jp/en/technical-st-en Accessed March 16, 2021

  26. “[YK17–17] Yokosuka cruise Report yk17–17 – 文書カタログ. http://www.godac.jamstec.go.jp/catalog/doc_catalog/metadataDisp/YK17-17_all Accessed March 15, 2021

  27. Yamanaka T et al (2015) The Tarama knoll: geochemical and biological profiles of hydrothermal activity. In: Ishibashi J, Okino K, Sunamura M (eds) Subseafloor biosphere linked to hydrothermal systems. Springer, Tokyo Japan, pp 497–504

    Google Scholar 

  28. Kulik DA et al (2013) GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Comput Geosci. https://doi.org/10.1007/s10596-012-9310-6

    Article  MATH  Google Scholar 

  29. Wagner T, Kulik DA, Hingerl FF, Dmytrieva SV (2012) GEM-Selektor geochemical modeling package: TSolMod library and data interface for multicomponent phase models. Can Mineral 50(5):1173–1195. https://doi.org/10.3749/canmin.50.5.1173

    Article  Google Scholar 

  30. Lothenbach B et al (2019) Cemdata18: a chemical thermodynamic database for hydrated Portland cements and alkali-activated materials. Cem Concr Res 115:472–506. https://doi.org/10.1016/j.cemconres.2018.04.018

    Article  Google Scholar 

  31. Thoenen T, Hummel W, Berner U, Curti E, The PSI. Nagra chemical thermodynamic data base 12/07 Accessed August 06, 2021. https://www.dora.lib4ri.ch/psi/islandora/object/psi%3A29731/datastream/PDF/Thoenen-2014-The_PSI-Nagra_chemical_thermodynamic_database_12-07-%28published_version%29.pdf

  32. Hummel W et al (2002) Nagra/PSI chemical thermodynamic data Base 01/01. Radiochim. Acta 90:805–813

    Article  Google Scholar 

  33. Kulik DA (2011) Improving the structural consistency of C-S-H solid solution thermodynamic models. Cem Concr Res 41(5):477–495. https://doi.org/10.1016/j.cemconres.2011.01.012

    Article  Google Scholar 

  34. Nied D, Enemark-Rasmussen K, L’Hopital E, Skibsted J, Lothenbach B (2016) Properties of magnesium silicate hydrates (M–S-H). Cem Concr Res 79:323–332. https://doi.org/10.1016/j.cemconres.2015.10.003

    Article  Google Scholar 

  35. Richardson IG (1999) The nature of C-S-H in hardened cements. Cem Concr Res 29(8):1131–1147. https://doi.org/10.1016/S0008-8846(99)00168-4

    Article  Google Scholar 

  36. Faucon P, Delagrave A, Petit JC, Richet C, Marchand JM, Zanni H (1999) Aluminum incorporation in calcium silicate hydrates (C−S−H) depending on their Ca/Si ratio. J Phys Chem B 103(37):7796–7802. https://doi.org/10.1021/jp990609q

    Article  Google Scholar 

  37. Dent Glasser LS, Lachowski EE, Mohan K, Taylor HFW (1978) A multi-method study of C3S hydration. Cem Concr Res 8(6):733–739. https://doi.org/10.1016/0008-8846(78)90082-0

    Article  Google Scholar 

  38. Chen JJ, Thomas JJ, Taylor HFW, Jennings HM (2004) Solubility and structure of calcium silicate hydrate. Cem Concr Res 34(9):1499–1519. https://doi.org/10.1016/j.cemconres.2004.04.034

    Article  Google Scholar 

  39. Haas J, Nonat A (2015) From C-S-H to C–A–S-H: experimental study and thermodynamic modelling. Cem Concr Res 68:124–138. https://doi.org/10.1016/j.cemconres.2014.10.020

    Article  Google Scholar 

  40. Lothenbach B, Nonat A (2015) Calcium silicate hydrates: solid and liquid phase composition. Cem Concr Res 78:57–70. https://doi.org/10.1016/j.cemconres.2015.03.019

    Article  Google Scholar 

  41. L’Hôpital E, Lothenbach B, Kulik DA, Scrivener K (2016) Influence of calcium to silica ratio on aluminium uptake in calcium silicate hydrate. Cem Concr Res 85:111–121. https://doi.org/10.1016/j.cemconres.2016.01.014

    Article  Google Scholar 

  42. Qoku E (2019) Characterization and quantification of crystalline and amorphous phase assemblage in ternary binder during Hydration. Dissertation, Technische Universität Bergakademie Freiberg

  43. Santhanam M, Cohen M, Olek J (2006) Differentiating seawater and groundwater sulfate attack in Portland cement mortars. Cem Concr Res 36(12):2132–2137. https://doi.org/10.1016/j.cemconres.2006.09.011

    Article  Google Scholar 

  44. Bonen D (1992) Composition and appearance of magnesium silicate hydrate and its relation to deterioration of cement-based materials. J Am Ceram Soc 75(10):2904–2906. https://doi.org/10.1111/j.1151-2916.1992.tb05530.x

    Article  Google Scholar 

  45. Tumidajski PJ, Chan GW (1996) Durability of high performance concrete in magnesium brine. Cem Concr Res 26(4):557–565. https://doi.org/10.1016/0008-8846(96)00034-8

    Article  Google Scholar 

  46. Bernard E, Lothenbach B, Cau-Dit-Coumes C, Pochard I, Rentsch D (2020) Aluminum incorporation into magnesium silicate hydrate (M–S-H). Cem Concr Res 128:105931. https://doi.org/10.1016/j.cemconres.2019.105931

    Article  Google Scholar 

  47. Bernard E, Lothenbach B, Le Goff F, Pochard I, Dauzères A (2017) Effect of magnesium on calcium silicate hydrate (C-S-H). Cem Concr Res 97:61–72. https://doi.org/10.1016/j.cemconres.2017.03.012

    Article  Google Scholar 

  48. Rives V (2001) Layered double hydroxides: present and future. Nova Publishers, Hauppauge

    Google Scholar 

  49. Kanezaki E (2004) Preparation of layered double hydroxides. In: Wypych F, Satyanarayana KG (eds) Interface sci technol. Elsevier, Amsterdam, pp 345–373

    Google Scholar 

  50. San Román MSS, Holgado MJ, Jaubertie C, Rives V (2008) Synthesis, characterisation and delamination behaviour of lactate-intercalated Mg. Al-hydrotalcite-like Compd Solid State Sci 10(10):1333–1341. https://doi.org/10.1016/j.solidstatesciences.2008.01.026

    Article  Google Scholar 

  51. Machner A, Zajac M, Ben Haha M, Kjellsen KO, Geiker MR, De Weerdt K (2018) Chloride-binding capacity of hydrotalcite in cement pastes containing dolomite and metakaolin. Cem Concr Res 107:163–181. https://doi.org/10.1016/j.cemconres.2018.02.002

    Article  Google Scholar 

  52. Andersen MD, Jakobsen HJ, Skibsted J (2004) Characterization of white Portland cement hydration and the C-S-H structure in the presence of sodium aluminate by 27Al and 29Si MAS NMR spectroscopy. Cem Concr Res 34(5):857–868. https://doi.org/10.1016/j.cemconres.2003.10.009

    Article  Google Scholar 

  53. Richardson IG (2014) Model structures for C-(A)-S-H(I). Acta Crystallogr B Struct Sci Cryst Eng Mater 70(6):903–923. https://doi.org/10.1107/S2052520614021982

    Article  Google Scholar 

  54. Faucon P, Adenot F, Jacquinot JF, Petit JC, Cabrillac R, Jorda M (1998) Long-term behaviour of cement pastes used for nuclear waste disposal: Review of physico-chemical mechanisms of water degradation. Cem Concr Res 28(6):847–857. https://doi.org/10.1016/S0008-8846(98)00053-2

    Article  Google Scholar 

  55. Richardson IG, Skibsted J, Black L, Kirkpatrick RJ (2010) Characterisation of cement hydrate phases by TEM, NMR and Raman spectroscopy. Adv Cem Res 22(4):233–248. https://doi.org/10.1680/adcr.2010.22.4.233

    Article  Google Scholar 

  56. Jones MR et al (2003) Studies using 27Al MAS NMR of AFm and AFt phases and the formation of Friedel’s salt. Cem Concr Res 33(2):177–182. https://doi.org/10.1016/S0008-8846(02)00901-8

    Article  Google Scholar 

  57. Jia S, Richardson IG (2018) Micro- and nano-structural evolutions in white Portland cement/pulverized fuel ash cement pastes due to deionized-water leaching. Cem Concr Res 103:191–203. https://doi.org/10.1016/j.cemconres.2017.10.014

    Article  Google Scholar 

  58. Concrete, 2nd edn. https://www.concrete.org/publications/internationalconcreteabstractsportal/m/details/id/18872 Accessed Mar 31, 2021

  59. Kumar R, Bhattacharjee B (2003) Porosity, pore size distribution and in situ strength of concrete. Cem Concr Res 33(1):155–164. https://doi.org/10.1016/S0008-8846(02)00942-0

    Article  Google Scholar 

  60. Hewlett P, Liska M (eds) (2019) Lea’s chemistry of cement and concrete. Butterworth-Heinemann, Oxford

    Google Scholar 

  61. Shi D, Winslow DN (1985) Contact angle and damage during mercury intrusion into cement paste. Cem Concr Res 15(4):645–654. https://doi.org/10.1016/0008-8846(85)90064-X

    Article  Google Scholar 

  62. Olson RA, Neubauer CM, Jennings HM (1997) Damage to the pore structure of hardened Portland cement paste by mercury intrusion. J Am Ceram Soc 80(9):2454–2458. https://doi.org/10.1111/j.1151-2916.1997.tb03144.x

    Article  Google Scholar 

  63. Scherer GW (2004) Stress from crystallization of salt. Cem Concr Res 34(9):1613–1624. https://doi.org/10.1016/j.cemconres.2003.12.034

    Article  Google Scholar 

  64. Yu C, Sun W, Scrivener K (2013) Mechanism of expansion of mortars immersed in sodium sulfate solutions. Cem Concr Res 43:105–111. https://doi.org/10.1016/j.cemconres.2012.10.001

    Article  Google Scholar 

  65. Lothenbach B, Bary B, Le Bescop P, Schmidt T, Leterrier N (2010) Sulfate ingress in Portland cement. Cem Concr Res 40(8):1211–1225. https://doi.org/10.1016/j.cemconres.2010.04.004

    Article  Google Scholar 

  66. Li G, Zhang A, Song Z, Shi C, Wang Y, Zhang J (2017) Study on the resistance to seawater corrosion of the cementitious systems containing ordinary Portland cement or/and calcium aluminate cement. Constr Build Mater 157:852–859. https://doi.org/10.1016/j.conbuildmat.2017.09.175

    Article  Google Scholar 

  67. Yuan Q, Shi C, De Schutter G, Audenaert K, Deng D (2009) Chloride binding of cement-based materials subjected to external chloride environment – a review. Constr Build Mater 23(1):1–13. https://doi.org/10.1016/j.conbuildmat.2008.02.004

    Article  Google Scholar 

  68. Balonis M, Lothenbach B, Le Saout G, Glasser FP (2010) Impact of chloride on the mineralogy of hydrated Portland cement systems. Cem Concr Res 40(7):1009–1022. https://doi.org/10.1016/j.cemconres.2010.03.002

    Article  Google Scholar 

  69. Mesbah A et al (2011) Crystal structures and phase transition of cementitious bi-anionic AFm-(Cl−, CO32−) compounds. J Am Ceram Soc 94(1):261–268. https://doi.org/10.1111/j.1551-2916.2010.04050.x

    Article  Google Scholar 

  70. De Weerdt K, Orsáková D, Geiker MR (2014) The impact of sulphate and magnesium on chloride binding in Portland cement paste. Cem Concr Res 65:30–40. https://doi.org/10.1016/j.cemconres.2014.07.007

    Article  Google Scholar 

  71. De Weerdt K, Colombo A, Coppola L, Justnes H, Geiker MR (2015) Impact of the associated cation on chloride binding of Portland cement paste. Cem Concr Res 68:196–202. https://doi.org/10.1016/j.cemconres.2014.01.027

    Article  Google Scholar 

  72. Deng H, He Z (2021) Interactions of sodium chloride solution and calcium silicate hydrate with different calcium to silicon ratios: a molecular dynamics study. Constr Build Mater 268:121067. https://doi.org/10.1016/j.conbuildmat.2020.121067

    Article  Google Scholar 

  73. Flatt RJ, Scherer GW (2008) Thermodynamics of crystallization stresses in DEF. Cem Concr Res 38(3):325–336. https://doi.org/10.1016/j.cemconres.2007.10.002

    Article  Google Scholar 

  74. Kawabata Y, Takano D, Takahashi K, Iwanami M (2022) In situ observation for the influence of hydraulic pressure on internal damage of cement-based materials. Mater Des 216:110556. https://doi.org/10.1016/j.matdes.2022.110556

    Article  Google Scholar 

  75. Clayton N, Gjorv O, Sakai K, Banthia N (1998) Effect of water pressure on concrete strength. Tromsø, pp 978–987

  76. Goto S, Roy DM (1981) Diffusion of ions through hardened cement pastes. Cem Concr Res 11(5–6):751–757. https://doi.org/10.1016/0008-8846(81)90033-8

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Sadayuki Watanabe of the Tokyo Metropolitan Industrial Technology Research Institute and Dr. Erica Brendler provided assistance with the MAS-NMR measurements. We would also like to thank Tokyo University of Marine Science and Technology Dr. Hiroko Makita and Professor Dr. Toshiro Yamanaka for assisting with the deep-sea field experiments.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mari Kobayashi.

Ethics declarations

Conflict of interest

The authors have no conflict of interest directly relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 110 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, M., Takahashi, K., Kawabata, Y. et al. Physicochemical properties of Portland cement/calcium aluminate cement/calcium sulfate ternary binder exposed to long-term deep-sea conditions. Mater Struct 55, 182 (2022). https://doi.org/10.1617/s11527-022-02021-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-022-02021-8

Keywords

Navigation