Skip to main content
Log in

Durability performance of binary and ternary blended cementitious systems with calcined clay: a RILEM TC 282-CCL, review

  • RILEM TC 282-CCL, Calcined Clays as Supplementary Cementitious Materials
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The durability performance of blended cementitious systems with calcined clays is reviewed in this paper by the RILEM TC 282-CCL on calcined clays as supplementary cementititous materials (SCMs) (working group on durability). The impact of metakaolin and other calcined clays on the porosity and pore structure of cementitious systems is discussed, followed by its impact on transport properties such as moisture ingress. The durability performance of binary and ternary cementitious systems with calcined clay is then reported with respect to chloride ingress, carbonation, sulphate attack, freeze–thaw and alkali-silica reaction. The role of unique microstructural alterations in concretes with calcined clay-limestone combinations due to the formation of CO3-AFm and their impact on different durability exposures is emphasised. While a large majority of studies agree that the chloride resistance of concretes with calcined clays is significantly improved, such concretes seem to be more susceptible to carbonation than those produced with plain Portland cement or other SCMs used at lower replacement levels. Also, several studies are focused on metakaolin and lower grade kaolinite clay, while there are limited studies on calcined smectite/illite or mixed clays, which could also play a crucial role to the improved adoption of large reserves of clay sources to produce sustainable binders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Sabir B, Wild S, Bai J (2001) Metakaolin and calcined clays as pozzolans for concrete: a review. Cem Concr Compos 23:441–454

    Article  Google Scholar 

  2. Poon CS, Lam L, Kou SC et al (2001) Rate of pozzolanic reaction of metakaolin in high-performance cement pastes. Cem Concr Res 31:1301–1306.https://doi.org/10.1016/S0008-8846(01)00581-6

    Article  Google Scholar 

  3. Brooks JJ, Megat Johari MA (2001) Effect of metakaolin on creep and shrinkage of concrete. Cem Concr Compos 23:495–502.https://doi.org/10.1016/S0958-9465(00)00095-0

    Article  Google Scholar 

  4. Khatib JM, Clay RM (2004) Absorption characteristics of metakaolin concrete. Cem Concr Res 34:19–29. https://doi.org/10.1016/S0008-8846(03)00188-1

    Article  Google Scholar 

  5. Frías M, Rodríguez O, Vegas I, Vigil R (2008) Properties of calcined clay waste and its influence on blended cement behavior. J Am Ceram Soc 91:1226–1230. https://doi.org/10.1111/j.1551-2916.2008.02289.x

    Article  Google Scholar 

  6. Gruber KA, Ramlochan T, Boddy A et al (2001) Increasing concrete durability with high-reactivity metakaolin. Cem Concr Compos 23:479–484.https://doi.org/10.1016/S0958-9465(00)00097-4

    Article  Google Scholar 

  7. Ding JT, Li Z (2002) Effects of metakaolin and silica fume on properties of concrete. ACI Mater J 99:393–398

    Google Scholar 

  8. Siddique R, Klaus J (2009) Influence of metakaolin on the properties of mortar and concrete: a review. Appl Clay Sci 43:392–400. https://doi.org/10.1016/j.clay.2008.11.007

    Article  Google Scholar 

  9. IS-1489 (part-2) (1991) IS 1489 Part-2—Portland pozzolana cement-specification part 2 Calcined Clay based. Bur Indian Stand

  10. ASTM-C618 (2019) Standard specification for coal fly ash and raw or calcined natural pozzolan for use. ASTM Stand. 1–5. https://doi.org/10.1520/C0618

  11. BS-8615-2 (2019) Specification for pozzolanic materials for use with Portland cement Part 2: High reactivity natural calcined pozzolana. BSI Stand Publ

  12. BS-8615-1 (2019) Specification for pozzolanic materials for use with portland cement Part-1 Natural pozzolana and natural calcined pozzolana. BSI Stand Publ

  13. EN197-1 (2011) EN 197-1: composition, specifications, and conformity criteria for common cements. Eur Stand

  14. ASTM C 311-18 (2018) Standard test methods for sampling and testing fly ash or natural pozzolans for use in portland-cement concrete. ASTM Stand. https://doi.org/10.1520/C0311

  15. Fernandez R, Martirena F, Scrivener KL (2011) The origin of the pozzolanic activity of calcined clay minerals: a comparison between kaolinite, illite and montmorillonite. Cem Concr Res 41:113–122. https://doi.org/10.1016/j.cemconres.2010.09.013

    Article  Google Scholar 

  16. Kaminskas R, Kubiliute R, Prialgauskaite B (2020) Smectite clay waste as an additive for Portland cement. Cem Concr Compos 113:103710. https://doi.org/10.1016/j.cemconcomp.2020.103710

    Article  Google Scholar 

  17. Taylor-Lange SC, Lamon EL, Riding KA, Juenger MCG (2015) Calcined kaolinite-bentonite clay blends as supplementary cementitious materials. Appl Clay Sci 108:84–93. https://doi.org/10.1016/j.clay.2015.01.025

    Article  Google Scholar 

  18. Ferreiro S, Herfort D, Damtoft JS (2017) Effect of raw clay type, fineness, water-to-cement ratio and fly ash addition on workability and strength performance of calcined clay–limestone Portland cements. Cem Concr Res 101:1–12. https://doi.org/10.1016/j.cemconres.2017.08.003

    Article  Google Scholar 

  19. Scrivener K, Martirena F, Bishnoi S, Maity S (2018) Calcined clay limestone cements (LC3). Cem Concr Res 114:49–56. https://doi.org/10.1016/j.cemconres.2017.08.017

    Article  Google Scholar 

  20. Alujas A, Fernández R, Quintana R et al (2015) Pozzolanic reactivity of low grade kaolinitic clays: Influence of calcination temperature and impact of calcination products on OPC hydration. Appl Clay Sci 108:94–101. https://doi.org/10.1016/j.clay.2015.01.028

    Article  Google Scholar 

  21. Gesoǧlu M, Güneyisi E, Özturan T, Mermerdaş K (2014) Permeability properties of concretes with high reactivity metakaolin and calcined impure kaolin. Mater Struct Constr 47:709–728

    Article  Google Scholar 

  22. Schulze SE, Rickert J (2019) Suitability of natural calcined clays as supplementary cementitious material. Cem Concr Compos 95:92–97.https://doi.org/10.1016/j.cemconcomp.2018.07.006

    Article  Google Scholar 

  23. Avet F, Scrivener K (2018) Investigation of the calcined kaolinite content on the hydration of Limestone Calcined Clay Cement ( LC 3). Cem Concr Res 107:124–135

    Article  Google Scholar 

  24. Dhandapani Y, Sakthivel T, Santhanam M et al (2018) Mechanical properties and durability performance of concretes with Limestone Calcined Clay Cement (LC3). Cem Concr Res 107:136–151. https://doi.org/10.1016/j.cemconres.2018.02.005

    Article  Google Scholar 

  25. Antoni M, Rossen J, Martirena F, Scrivener K (2012) Cement substitution by a combination of metakaolin and limestone. Cem Concr Res 42:1579–1589

    Article  Google Scholar 

  26. Avet F, Scrivener K (2020) Influence of pH on the chloride binding capacity of Limestone Calcined Clay Cements (LC3). Cem Concr Res 131:106031. https://doi.org/10.1016/j.cemconres.2020.106031

    Article  Google Scholar 

  27. Dhandapani Y, Santhanam M (2020) Investigation on the microstructure-related characteristics to elucidate performance of composite cement with limestone-calcined clay combination. Cem Concr Res 129:105959. https://doi.org/10.1016/j.cemconres.2019.105959

    Article  Google Scholar 

  28. Machner A, Zajac M, Ben M et al (2018) Stability of the hydrate phase assemblage in Portland composite cements containing dolomite and metakaolin after leaching, carbonation, and chloride exposure. Cem Concr Compos 89:89–106

    Article  Google Scholar 

  29. Machner A, Zajac M, Ben Haha M et al (2018) Limitations of the hydrotalcite formation in Portland composite cement pastes containing dolomite and metakaolin. Cem Concr Res 105:1–17. https://doi.org/10.1016/j.cemconres.2017.11.007

    Article  Google Scholar 

  30. Shi Z, Geiker MR, De Weerdt K et al (2017) Role of calcium on chloride binding in hydrated Portland cement–metakaolin–limestone blends. Cem Concr Res 95:205–216. https://doi.org/10.1016/j.cemconres.2017.02.003

    Article  Google Scholar 

  31. Dai Z, Tran TT, Skibsted J (2014) Aluminum incorporation in the C-S-H phase of white portland cement-metakaolin blends studied by 27 Al and 29 Si MAS NMR spectroscopy. J Am Ceram Soc 97:2662–2671. https://doi.org/10.1111/jace.13006

    Article  Google Scholar 

  32. Avet F, Boehm-Courjault E, Scrivener K (2019) Investigation of C-A-S-H composition, morphology and density in Limestone Calcined Clay Cement (LC3). Cem Concr Res 115:70–79. https://doi.org/10.1016/j.cemconres.2018.10.011

    Article  Google Scholar 

  33. Lothenbach B, Le Saout G, Gallucci E, Scrivener K (2008) Influence of limestone on the hydration of Portland cements. Cem Concr Res 38:848–860

    Article  Google Scholar 

  34. Kunther W, Dai Z, Skibsted J (2016) Thermodynamic modeling of hydrated white Portland cement–metakaolin–limestone blends utilizing hydration kinetics from 29Si MAS NMR spectroscopy. Cem Concr Res 86:29–41. https://doi.org/10.1016/j.cemconres.2016.04.012

    Article  Google Scholar 

  35. Zunino F, Scrivener K (2021) The reaction between metakaolin and limestone and its effect in porosity refinement and mechanical properties. Cem Concr Res 140:106307. https://doi.org/10.1016/j.cemconres.2020.106307

    Article  Google Scholar 

  36. Krishnan S, Kanaujia SK, Mithia S, Bishnoi S (2018) Hydration kinetics and mechanisms of carbonates from stone wastes in ternary blends with calcined clay. Constr Build Mater 164:265–274. https://doi.org/10.1016/j.conbuildmat.2017.12.240

    Article  Google Scholar 

  37. Krishnan S, Bishnoi S (2018) Understanding the hydration of dolomite in cementitious systems with reactive aluminosilicates such as calcined clay. Cem Concr Res 108:116–128. https://doi.org/10.1016/j.cemconres.2018.03.010

    Article  Google Scholar 

  38. Machner A, Zajac M, Ben Haha M et al (2017) Portland metakaolin cement containing dolomite or limestone—similarities and differences in phase assemblage and compressive strength. Constr Build Mater 157:214–225. https://doi.org/10.1016/j.conbuildmat.2017.09.056

    Article  Google Scholar 

  39. Dhandapani Y, Santhanam M, Kaladharan G, Ramanathan S (2021) Towards ternary binders involving limestone additions—a review. Cem Concr Res 143:106396. https://doi.org/10.1016/j.cemconres.2021.106396

    Article  Google Scholar 

  40. Cordoba GP, Zito SV, Sposito R et al (2020) Concretes with calcined clay and calcined shale: workability, mechanical, and transport properties. J Mater Civ Eng 32:1–11. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003296

    Article  Google Scholar 

  41. Rossetti A, Ikumi T, Segura I, Irassar EF (2021) Sulfate performance of blended cements (limestone and illite calcined clay) exposed to aggressive environment after casting. Cem Concr Res 147:106495. https://doi.org/10.1016/j.cemconres.2021.106495

    Article  Google Scholar 

  42. Shi Z, Lothenbach B, Geiker MR et al (2016) Experimental studies and thermodynamic modeling of the carbonation of Portland cement, metakaolin and limestone mortars. Cem Concr Res 88:60–72. https://doi.org/10.1016/j.cemconres.2016.06.006

    Article  Google Scholar 

  43. Balonis M, Glasser FP (2009) The density of cement phases. Cem Concr Res 39:733–739. https://doi.org/10.1016/j.cemconres.2009.06.005

    Article  Google Scholar 

  44. Shi Z, Geiker MR, Lothenbach B et al (2017) Friedel’s salt profiles from thermogravimetric analysis and thermodynamic modelling of Portland cement-based mortars exposed to sodium chloride solution. Cem Concr Compos 78:73–83. https://doi.org/10.1016/j.cemconcomp.2017.01.002

    Article  Google Scholar 

  45. Bucher R, Diederich P, Escadeillas G, Cyr M (2017) Service life of metakaolin-based concrete exposed to carbonation: comparison with blended cement containing fly ash, blast furnace slag and limestone filler. Cem Concr Res 99:18–29. https://doi.org/10.1016/j.cemconres.2017.04.013

    Article  Google Scholar 

  46. Aligizaki KK (2014) Pore structure of cement-based materials: testing, interpretation and requirements. CRC Press, Boca Raton

    Google Scholar 

  47. Cui L, Cahyadi JH (2001) Permeability and pore structure of OPC paste. Cem Concr Res 31:277–282.https://doi.org/10.1016/S0008-8846(00)00474-9

    Article  Google Scholar 

  48. Dhandapani Y, Santhanam M (2017) Assessment of pore structure evolution in the limestone calcined clay cementitious system and its implications for performance. Cem Concr Compos 84:36–47.https://doi.org/10.1016/j.cemconcomp.2017.08.012

    Article  Google Scholar 

  49. Nokken MR, Hooton RD (2007) Using pore parameters to estimate permeability or conductivity of concrete. Mater Struct 41:1–16

    Article  Google Scholar 

  50. Ilić B, Radonjanin V, Malešev M et al (2017) Study on the addition effect of metakaolin and mechanically activated kaolin on cement strength and microstructure under different curing conditions. Constr Build Mater 133:243–252. https://doi.org/10.1016/j.conbuildmat.2016.12.068

    Article  Google Scholar 

  51. Janotka I, Puertas F, Palacios M et al (2010) Metakaolin sand-blended-cement pastes: Rheology, hydration process and mechanical properties. Constr Build Mater 24:791–802. https://doi.org/10.1016/j.conbuildmat.2009.10.028

    Article  Google Scholar 

  52. Poon CS, Kou SC, Lam L (2006) Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete. Constr Build Mater 20:858–865. https://doi.org/10.1016/j.conbuildmat.2005.07.001

    Article  Google Scholar 

  53. Ramezanianpour AM, Hooton RD, Mohammad A, Hooton RD (2014) A study on hydration, compressive strength, and porosity of Portland-limestone cement mixes containing SCMs. Cem Concr Compos 51:1–13. https://doi.org/10.1016/j.cemconcomp.2014.03.006

    Article  Google Scholar 

  54. Shah V, Scrivener KL, Bhattacharjee B, Bishnoi S (2018) Changes in microstructure characteristics of cement paste on carbonation. Cem Concr Res 109:184–197. https://doi.org/10.1016/j.cemconres.2018.04.016

    Article  Google Scholar 

  55. Shah V, Parashar A, Mishra G et al (2018) Influence of cement replacement by limestone calcined clay pozzolan on the engineering properties of mortar and concrete. Adv Cem Res, 32: 101–111.https://doi.org/10.1680/jadcr.18.00073

  56. Tang J, Wei S, Li W et al (2019) Synergistic effect of metakaolin and limestone on the hydration properties of Portland cement. Constr Build Mater 223:177–184.https://doi.org/10.1016/j.conbuildmat.2019.06.059

    Article  Google Scholar 

  57. Zajac M, Durdzinski P, Stabler C et al (2018) Influence of calcium and magnesium carbonates on hydration kinetics, hydrate assemblage and microstructural development of metakaolin containing composite cements. Cem Concr Res 106:91–102.https://doi.org/10.1016/j.cemconres.2018.01.008

    Article  Google Scholar 

  58. Medjigbodo G, Rozière E, Charrier K et al (2018) Hydration, shrinkage, and durability of ternary binders containing Portland cement, limestone filler and metakaolin. Constr Build Mater 183:114–126.https://doi.org/10.1016/j.conbuildmat.2018.06.138

    Article  Google Scholar 

  59. Avet F, Sofia L, Scrivener K (2019) Concrete performance of limestone calcined clay cement (LC3) compared with conventional cements. Adv Civ Eng Mater 8:20190052. https://doi.org/10.1520/acem20190052

    Article  Google Scholar 

  60. Barbhuiya S, Chow PL, Memon S (2015) Microstructure, hydration and nanomechanical properties of concrete containing metakaolin. Constr Build Mater 95:696–702. https://doi.org/10.1016/j.conbuildmat.2015.07.101

    Article  Google Scholar 

  61. Batis G, Pantazopoulou P, Tsivilis S, Badogiannis E (2005) The effect of metakaolin on the corrosion behavior of cement mortars. Cem Concr Compos 27:125–130. https://doi.org/10.1016/j.cemconcomp.2004.02.041

    Article  Google Scholar 

  62. Cruz JM, Fita IC, Soriano L et al (2013) The use of electrical impedance spectroscopy for monitoring the hydration products of Portland cement mortars with high percentage of pozzolans. Cem Concr Res 50:51–61. https://doi.org/10.1016/j.cemconres.2013.03.019

    Article  Google Scholar 

  63. Güneyisi E, Gesoğlu M, Mermerdaş K (2007) Improving strength, drying shrinkage, and pore structure of concrete using metakaolin. Mater Struct 41:937–949. https://doi.org/10.1617/s11527-007-9296-z

    Article  Google Scholar 

  64. Khatib JM, Wild S (1996) Pore size distribution of metakaolin paste. Cem Concr Res 26:1545–1553. https://doi.org/10.1016/0008-8846(96)00147-0

    Article  Google Scholar 

  65. Fŕias M, Cabrera J (2000) Pore size distribution and degree of hydration of metakaolin–cement pastes. Cem Concr Res 30:561–569. https://doi.org/10.1016/S0008-8846(00)00203-9

    Article  Google Scholar 

  66. Tironi A, Scian AN, Irassar EF, Eng C (2017) Blended cements with limestone filler and kaolinitic calcined clay: Filler and pozzolanic effects. J Mater Civ Eng 29:1–8. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001965

    Article  Google Scholar 

  67. Ghoddousi P, Adelzade Saadabadi L (2018) Pore Structure indicators of chloride transport in metakaolin and silica fume self-compacting concrete. Int J Civ Eng 16:583–592. https://doi.org/10.1007/s40999-017-0164-0

    Article  Google Scholar 

  68. Vejmelková E, Keppert M, Grzeszczyk S et al (2011) Properties of self-compacting concrete mixtures containing metakaolin and blast furnace slag. Constr Build Mater 25:1325–1331. https://doi.org/10.1016/j.conbuildmat.2010.09.012

    Article  Google Scholar 

  69. Duan P, Shui Z, Chen W, Shen C (2012) Influence of metakaolin on pore structure-related properties and thermodynamic stability of hydrate phases of concrete in seawater environment. Constr Build Mater 36:947–953. https://doi.org/10.1016/j.conbuildmat.2012.06.073

    Article  Google Scholar 

  70. Gettu R, Santhanam M, Pillai R, Dhandapani Y (2018) Recent research on limestone calcined clay cement (LC3) at IIT Madras. Conf Honor Centen Lab Constr Mater 60th Birthd Prof Karen Scrivener, pp 76–79

  71. Marchetti G, Rahhal V, Pavlík Z et al (2020) Assessment of packing, flowability, hydration kinetics, and strength of blended cements with illitic calcined shale. Constr Build Mater 254:119042. https://doi.org/10.1016/j.conbuildmat.2020.119042

    Article  Google Scholar 

  72. Manchiryal RKK, Neithalath N (2009) Analysis of the influence of material parameters on electrical conductivity of cement pastes and concretes. Mag Concr Res 61:257–270. https://doi.org/10.1680/macr.2008.00064

    Article  Google Scholar 

  73. Sui S, Georget F, Maraghechi H et al (2019) Towards a generic approach to durability: factors affecting chloride transport in binary and ternary cementitious materials. Cem Concr Res 124:105783. https://doi.org/10.1016/j.cemconres.2019.105783

    Article  Google Scholar 

  74. Maraghechi H, Avet F, Wong H et al (2018) Performance of Limestone Calcined Clay Cement (LC3) with various kaolinite contents with respect to chloride transport. Mater Struct 51:125. https://doi.org/10.1617/s11527-018-1255-3

    Article  Google Scholar 

  75. Muni H, Dhandapani Y, Vignesh K, Santhanam M (2020) Anomalous early increase in concrete resistivity with calcined clay binders. In: Calcined Clays for Sustainable Concrete: Proceedings of 3nd International Conference on Calcined Clays for Sustainable Concrete, pp 1–8

  76. Nguyen QD, Khan MSH, Castel A (2018) Engineering properties of limestone calcined clay concrete. J Adv Concr Technol 16:343–357. https://doi.org/10.3151/jact.16.343

    Article  Google Scholar 

  77. Dhandapani Y, Santhanam M, Gettu R, Pillai RG (2020) Perspectives on blended cementitious systems with calcined clay–limestone combination for sustainable low carbon cement transition. Indian Concr J 94:25–38

    Google Scholar 

  78. Alexander M, Bertron A, de Belie N (2012) Performance of cement-based materials in aggressive aqueous environments (State-of-the-Art Reports. Springer/RILEM, Dordrecht).

  79. Alexander M, Ballim Y, Santhanam M (2005) Performance specifications for concrete using the durability index approach. Indian Concr J 79:41–46

    Google Scholar 

  80. Bakera AT, Alexander MG (2019) Use of metakaolin as a supplementary cementitious material in concrete, with a focus on durability properties. RILEM Tech Lett 4:89–102

    Article  Google Scholar 

  81. Alexander MG, Mackechnie JR, Ballim Y (1999) Concrete durability index testing manual (Research Monograph No. 4). Dep. Civ. Eng. Univ. Cape T. 1–33

  82. Güneyisi E, Mermerdaş K (2007) Comparative study on strength, sorptivity, and chloride ingress characteristics of air-cured and water-cured concretes modified with metakaolin. Mater Struct Constr 40:1161–1171

    Article  Google Scholar 

  83. Gonçalves JP, Tavares LM, Toledo Filho RD, Fairbairn EMR (2009) Performance evaluation of cement mortars modified with metakaolin or ground brick. Constr Build Mater 23:1971–1979. https://doi.org/10.1016/j.conbuildmat.2008.08.027

    Article  Google Scholar 

  84. Dhandapani Y (2020) Composite cements with limestone additions: microstructure and transport properties. PhD Thesis, IIT Madras.

  85. Ahari RS, Erdem TK, Ramyar K et al (2015) Permeability properties of self-consolidating concrete containing various supplementary cementitious materials. Constr Build Mater 79:326–336. https://doi.org/10.1016/j.conbuildmat.2015.01.053

    Article  Google Scholar 

  86. Badogiannis E, Tsivilis S (2009) Exploitation of poor Greek kaolins: durability of metakaolin concrete. Cem Concr Compos 31:128–133. https://doi.org/10.1016/j.cemconcomp.2008.11.001

    Article  Google Scholar 

  87. Toledo Filho RD, Gonçalves JP, Americano BB, Fairbairn EMR (2007) Potential for use of crushed waste calcined-clay brick as a supplementary cementitious material in Brazil. Cem Concr Res 37:1357–1365. https://doi.org/10.1016/j.cemconres.2007.06.005

    Article  Google Scholar 

  88. Vivek SS, Dhinakaran G (2017) Durability characteristics of binary blend high strength SCC. Constr Build Mater 146:1–8. https://doi.org/10.1016/j.conbuildmat.2017.04.063

    Article  Google Scholar 

  89. Chen JJ, Li QH, Ng PL et al (2020) Cement equivalence of metakaolin for workability, cohesiveness, strength and sorptivity of concrete. Materials 13:1646

    Google Scholar 

  90. Zibara H, Hooton RD, Thomas MDA, Stanish K (2008) Influence of the C/S and C/A ratios of hydration products on the chloride ion binding capacity of lime-SF and lime-MK mixtures. Cem Concr Res 38:422–426. https://doi.org/10.1016/j.cemconres.2007.08.024

    Article  Google Scholar 

  91. Detwiler R, Bhatty J, Barger G, Hansen E (2001) Durability of concrete containing calcined clay. Concr Int 23:43–47

    Google Scholar 

  92. Kavitha OR, Shanthi VM, Arulraj GP, Sivakumar VR (2016) Microstructural studies on eco-friendly and durable Self-compacting concrete blended with metakaolin. Appl Clay Sci 124–125:143–149. https://doi.org/10.1016/j.clay.2016.02.011

    Article  Google Scholar 

  93. Wilson W, Georget F, Scrivener K (2021) Unravelling chloride transport/microstructure relationships for blended-cement pastes with the mini-migration method. Cem Concr Res 140:106264. https://doi.org/10.1016/j.cemconres.2020.106264

    Article  Google Scholar 

  94. Pillai RG, Gettu R, Santhanam M et al (2019) Service life and life cycle assessment of reinforced concrete systems with limestone calcined clay cement (LC3). Cem Concr Res 118:111–119. https://doi.org/10.1016/j.cemconres.2018.11.019

    Article  Google Scholar 

  95. von Greve-Dierfeld S, Lothenbach B, Vollpracht A et al (2020) Understanding the carbonation of concrete with supplementary cementitious materials: a critical review by RILEM TC 281-CCC. Mater Struct, 53:136 https://doi.org/10.1617/s11527-020-01558-w

  96. Shah V, Bishnoi S (2018) Carbonation resistance of cements containing supplementary cementitious materials and its relation to various parameters of concrete. Constr Build Mater 178:219–232. https://doi.org/10.1016/j.conbuildmat.2018.05.162

    Article  Google Scholar 

  97. Georget F, Soja W, Scrivener KL (2020) Characteristic lengths of the carbonation front in naturally carbonated cement pastes: Implications for reactive transport models. Cem Concr Res 134:106080. https://doi.org/10.1016/j.cemconres.2020.106080

    Article  Google Scholar 

  98. Khan MSH, Nguyen QD, Castel A (2020) Performance of limestone calcined clay blended cement-based concrete against carbonation. Adv Cem Res, 32:481-491. https://doi.org/10.1680/jadcr.18.00172

  99. Sanjuán MA, Andrade C, Cheyrezy M (2003) Concrete carbonation tests in natural and accelerated conditions. Adv Cem Res 15:171–180. https://doi.org/10.1680/adcr.2003.15.4.171

    Article  Google Scholar 

  100. Castellote M, Fernandez L, Andrade C, Alonso C (2009) Chemical changes and phase analysis of OPC pastes carbonated at different CO2 concentrations. Mater Struct Constr 42:515–525. https://doi.org/10.1617/s11527-008-9399-1

    Article  Google Scholar 

  101. Hyvert N, Sellier A, Duprat F et al (2010) Dependency of C-S-H carbonation rate on CO2 pressure to explain transition from accelerated tests to natural carbonation. Cem Concr Res 40:1582–1589. https://doi.org/10.1016/j.cemconres.2010.06.010

    Article  Google Scholar 

  102. Sisomphon K, Franke L (2007) Carbonation rates of concretes containing high volume of pozzolanic materials. Cem Concr Res 37:1647–1653. https://doi.org/10.1016/j.cemconres.2007.08.014

    Article  Google Scholar 

  103. Antoni M (2013) Investigation of cement substitution by blends of calcined clays and limestone. PhD thesis, EPFL, Switzerland. pp. 254

    Google Scholar 

  104. Østnor TA, Justnes H (2014) Durability of mortar with calcined marl as supplementary cementing material. Adv Cem Res 26:344–352. https://doi.org/10.1680/adcr.13.00040

    Article  Google Scholar 

  105. McPolin DO, Basheer PA, Long AE et al (2007) New test method to obtain pH profiles due to carbonation of concretes containing supplementary cementitious materials. J Mater Civ Eng 19:936–946. https://doi.org/10.1061/(asce)0899-1561(2007)19:11(936)

    Article  Google Scholar 

  106. Kim HS, Lee SH, Moon HY (2007) Strength properties and durability aspects of high strength concrete using Korean metakaolin. Constr Build Mater 21:1229–1237. https://doi.org/10.1016/j.conbuildmat.2006.05.007

    Article  Google Scholar 

  107. Soja W, Georget F, Maraghechi H, Scrivener K (2020) Evolution of microstructural changes in cement paste during environmental drying. Cem Concr Res 134:106093. https://doi.org/10.1016/j.cemconres.2020.106093

    Article  Google Scholar 

  108. Shah V, Bishnoi S (2018) Analysis of pore structure characteristics of carbonated low-clinker cements. Transp Porous Media 124:861–881. https://doi.org/10.1007/s11242-018-1101-7

    Article  Google Scholar 

  109. Sevelsted TF, Skibsted J (2015) Carbonation of C-S–H and C–A–S–H samples studied by 13C, 27Al and 29Si MAS NMR spectroscopy. Cem Concr Res 71:56–65. https://doi.org/10.1016/j.cemconres.2015.01.019

    Article  Google Scholar 

  110. Chen JJ, Thomas JJ, Jennings HM (2006) Decalcification shrinkage of cement paste. Cem Concr Res 36:801–809. https://doi.org/10.1016/j.cemconres.2005.11.003

    Article  Google Scholar 

  111. Gettu R, Pillai RG, Santhanam M et al (2018) Sustainability-based decision support framework for choosing concrete mixture proportions. Mater Struct 51:165. https://doi.org/10.1617/s11527-018-1291-z

    Article  Google Scholar 

  112. Cabrera E, Alujas-díaz A, Elsener B, Martirena-hernandez JF (2020) Preliminary results on corrosion rate in carbonated LC3 concrete. In: Martirena-Hernandez J, Alujas-Díaz A., Amador-Hernandez M (eds) Proceedings of the international conference of sustainable production and use of cement and concrete. RILEM Bookseries, vol 22. Springer, Cham.

  113. Stefanoni M, Angst U, Elsener B (2018) Corrosion rate of carbon steel in carbonated concrete—a critical review. Cem Concr Res 103:35–48. https://doi.org/10.1016/j.cemconres.2017.10.007

    Article  Google Scholar 

  114. Nguyen QD, Castel A (2020) Reinforcement corrosion in limestone flash calcined clay cement-based concrete. Cem Concr Res 132:106051. https://doi.org/10.1016/j.cemconres.2020.106051

    Article  Google Scholar 

  115. Cuban Standard (2014) NC 120: Hormigon hidráulico—especificaciones. El Vedado (La Habana): (2014)

  116. Andrade C, Andrea R (2010) Electrical resistivity as microstructural parameter for modelling of service life of reinforced concrete structures. In: 2nd Int Symp Serv Life Des Infrastructure, Delft, Netherlands, pp 379–388

  117. Zajac M, Skocek J, Adu-Amankwah S et al (2018) Impact of microstructure on the performance of composite cements: Why higher total porosity can result in higher strength. Cem Concr Compos 90:178–192. https://doi.org/10.1016/j.cemconcomp.2018.03.023

    Article  Google Scholar 

  118. Saetta AV, Schrefler BA, Vitaliani RV (1993) The carbonation of concrete and the mechanism of moisture, heat and carbon dioxide flow through porous materials. Cem Concr Res 23:761–772. https://doi.org/10.1016/0008-8846(93)90030-D

    Article  Google Scholar 

  119. Costa A, Appleton J (2001) Concrete carbonation and chloride penetration in a marine environment. Concr Sci Eng 3:242–249

    Google Scholar 

  120. Gollop RS, Taylor HFW (1992) Microstructural and microanalytical studies of sulfate attack. I. Ordinary portland cement paste. Cem Concr Res 22:1027–1038. https://doi.org/10.1016/0008-8846(92)90033-R

    Article  Google Scholar 

  121. Gollop RS, Taylor HFW (1996) Microstructural and microanalytical studies of sulfate attack. IV. Reactions of a slag cement paste with sodium and magnesium sulfate solutions. Cem Concr Res 26:1013–1028. https://doi.org/10.1016/0008-8846(96)00089-0

    Article  Google Scholar 

  122. Santhanam M, Cohen M, Olek J (2001) Sulfate attack research—whither now? Cem Concr Res 31:845–851. https://doi.org/10.1016/S0008-8846(01)00510-5

    Article  Google Scholar 

  123. Santhanam M, Cohen MD, Olek J (2003) Mechanism of sulfate attack: a fresh look. Cem Concr Res 33:341–346. https://doi.org/10.1016/S0008-8846(02)00958-4

    Article  Google Scholar 

  124. Santhanam M, Cohen MD, Olek J (2003) Mechanism of sulfate attack: A fresh look - Part 2. Proposed mechanisms Cem Concr Res 33:341–346. https://doi.org/10.1016/S0008-8846(02)00958-4

    Article  Google Scholar 

  125. Santhanam M, Cohen MD, Olek J (2003) Effects of gypsum formation on the performance of cement mortars during external sulfate attack. Cem Concr Res 33:325–332. https://doi.org/10.1016/S0008-8846(02)00955-9

    Article  Google Scholar 

  126. Yu C, Sun W, Scrivener K (2013) Mechanism of expansion of mortars immersed in sodium sulfate solutions. Cem Concr Res 43:105–111. https://doi.org/10.1016/j.cemconres.2012.10.001

    Article  Google Scholar 

  127. ACI 201 (2008) 201.2R-08 Guide to durable concrete.

  128. Monteiro PJM, Kurtis KE (2003) Time to failure for concrete exposed to severe sulfate attack. Cem Concr Res 33:987–993. https://doi.org/10.1016/S0008-8846(02)01097-9

    Article  Google Scholar 

  129. Kunther W, Lothenbach B, Skibsted J (2015) Influence of the Ca/Si ratio of the C-S–H phase on the interaction with sulfate ions and its impact on the ettringite crystallization pressure. Cem Concr Res 69:37–49. https://doi.org/10.1016/j.cemconres.2014.12.002

    Article  Google Scholar 

  130. Kunther W, Lothenbach B, Scrivener KL (2013) On the relevance of volume increase for the length changes of mortar bars in sulfate solutions. Cem Concr Res 46:23–29. https://doi.org/10.1016/j.cemconres.2013.01.002

    Article  Google Scholar 

  131. Scherer GW, Scherer GW (1999) Crystallization in pores. Cem Concr Res 29:1347–1358. https://doi.org/10.1016/S0008-8846(99)00002-2

    Article  Google Scholar 

  132. Irbe L, Beddoe RE, Heinz D (2019) The role of aluminium in C-A-S-H during sulfate attack on concrete. Cem Concr Res 116:71–80. https://doi.org/10.1016/j.cemconres.2018.11.012

    Article  Google Scholar 

  133. Kunther W, Lothenbach B, Scrivener KL (2013) Deterioration of mortar bars immersed in magnesium containing sulfate solutions. Mater Struct Constr 46:2003–2011. https://doi.org/10.1617/s11527-013-0032-6

    Article  Google Scholar 

  134. Khatib JM, Wild S (1998) Sulphate resistance of metakaolin mortar. Cem Concr Res 28:83–92

    Article  Google Scholar 

  135. Ramlochan T, Thomas M (2000) Effect of metakaolin on external sulfate attack. In: Symposium Paper, ACI

  136. Courard L, Darimont A, Schouterden M et al (2003) Durability of mortars modified with metakaolin. Cem Concr Res 33:1473–1479. https://doi.org/10.1016/S0008-8846(03)00090-5

    Article  Google Scholar 

  137. Yazıcı Ş, Arel HŞ, Anuk D (2014) Influences of metakaolin on the durability and mechanical properties of mortars. Arab J Sci Eng 39:8585–8592. https://doi.org/10.1007/s13369-014-1413-z

    Article  Google Scholar 

  138. Vu DD, Stroeven P, Bui VB (2001) Strength and durability aspects of calcined kaolin-blended Portland cement mortar and concrete. Cem Concr Compos 23:471–478. https://doi.org/10.1016/S0958-9465(00)00091-3

    Article  Google Scholar 

  139. Lee ST, Moon HY, Hooton RD, Kim JP (2005) Effect of solution concentrations and replacement levels of metakaolin on the resistance of mortars exposed to magnesium sulfate solutions. Cem Concr Res 35:1314–1317. https://doi.org/10.1016/j.cemconres.2004.10.035

    Article  Google Scholar 

  140. Kakali G, Tsivilis S, Skaropoulou A et al (2003) Parameters affecting thaumasite formation in limestone cement mortar. Cem Concr Compos 25:977–981. https://doi.org/10.1016/S0958-9465(03)00119-7

    Article  Google Scholar 

  141. Skaropoulou A, Tsivilis S, Kakali G et al (2009) Thaumasite form of sulfate attack in limestone cement mortars: a study on long term efficiency of mineral admixtures. Constr Build Mater 23:2338–2345. https://doi.org/10.1016/j.conbuildmat.2008.11.004

    Article  Google Scholar 

  142. Hossack AM, Thomas MDAA (2015) The effect of temperature on the rate of sulfate attack of Portland cement blended mortars in Na2SO4 solution. Cem Concr Res 73:136–142. https://doi.org/10.1016/j.cemconres.2015.02.024

    Article  Google Scholar 

  143. Trümer A, Ludwig HM, Schellhorn M, Diedel R (2019) Effect of a calcined Westerwald bentonite as supplementary cementitious material on the long-term performance of concrete. Appl Clay Sci 168:36–42. https://doi.org/10.1016/j.clay.2018.10.015

    Article  Google Scholar 

  144. Trümer A, Ludwig H-M (2018) Assessment of calcined clays according to the main criterions of concrete durability. In: Martirena F, Favier A, Scrivener K (eds) Calcined Clays for Sustainable Concrete. Springer, Netherlands, Dordrecht, pp 475–481

    Chapter  Google Scholar 

  145. Cordoba G, Rossetti A, Falcone D, Irassar EF (2018) Sulfate and alkali-silica performance of blended cements containing illitic calcined clays. In: Martirena F, Favier A, Scrivener K (eds) Calcined clays for sustainable concrete. Springer, Netherlands, Dordrecht, pp 117–123

    Chapter  Google Scholar 

  146. Al-Akhras NM (2006) Durability of metakaolin concrete to sulfate attack. Cem Concr Res 36:1727–1734. https://doi.org/10.1016/j.cemconres.2006.03.026

    Article  Google Scholar 

  147. Güneyisi E, Gesoğlu M, Mermerdaş K (2010) Strength deterioration of plain and metakaolin concretes in aggressive sulfate environments. J Mater Civ Eng 22:403–407. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000034

    Article  Google Scholar 

  148. Wild S, Khatib JM, O’Farrell M (1997) Sulpahte resistance of mortar, containing ground brick clay at different temperatures. Cem Concr Res 21:295–316

    Google Scholar 

  149. Zunino F, Scrivener KL (2019) The influence of the filler effect in the sulfate requirement of OPC and blended cements. Cem Concr Res 126:105918. https://doi.org/10.1016/j.cemconres.2019.105918

    Article  Google Scholar 

  150. Skaropoulou A, Sotiriadis K, Kakali G, Tsivilis S (2013) Use of mineral admixtures to improve the resistance of limestone cement concrete against thaumasite form of sulfate attack. Cem Concr Compos 37:267–275. https://doi.org/10.1016/j.cemconcomp.2013.01.007

    Article  Google Scholar 

  151. Sotiriadis K, Mróz R (2019) Simulation of thaumasite sulfate attack on portland cement mixtures using synthesized cement phases. J Mater Civ Eng 31:1–10. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002612

    Article  Google Scholar 

  152. Sotiriadis K, Mácová P, Mazur AS et al (2020) Long-term thaumasite sulfate attack on Portland-limestone cement concrete: a multi-technique analytical approach for assessing phase assemblage. Cem Concr Res 130:105995. https://doi.org/10.1016/j.cemconres.2020.105995

    Article  Google Scholar 

  153. Hossack AM, Thomas MDA (2015) Varying fly ash and slag contents in Portland limestone cement mortars exposed to external sulfates. Constr Build Mater 78:333–341. https://doi.org/10.1016/j.conbuildmat.2015.01.030

    Article  Google Scholar 

  154. Shi Z, Ferreiro S, Lothenbach B et al (2019) Sulfate resistance of calcined clay – Limestone – Portland cements. Cem Concr Res 116:238–251. https://doi.org/10.1016/j.cemconres.2018.11.003

    Article  Google Scholar 

  155. Rossetti A, Ikumi T, Segura I, Irassar E (2020) Sulfate resistance of blended cements (Limestone Illite Calcined Clay) exposed without previous curing. XV International conference on durability of building materials and components, DBMC 2020:1625–1632

    Google Scholar 

  156. Hayman S, Thomas M, Beaman N, Gilks P (2010) Selection of an effective ASR-prevention strategy for use with a highly reactive aggregate for the reconstruction of concrete structures at Mactaquac generating station. Cem Concr Res 40:605–610. https://doi.org/10.1016/j.cemconres.2009.08.015

    Article  Google Scholar 

  157. Benoit Fournier, Marc-André Bérubé, Kevin J. Folliard MT (2010) Report on ASR Mitigation. Fed Highw Adm Publ FHWA-HRT-04–113 Techbr FHWA-HRT-06–071

  158. Miyagawa T, Seto K, Sasaki K et al (2006) Fracture of reinforcing steels in concrete structures damaged by alkali-silica reaction - Field survey, mechanism and maintenance. J Adv Concr Technol 4:339–355. https://doi.org/10.3151/jact.4.339

    Article  Google Scholar 

  159. Fernandes I (2009) Composition of alkali–silica reaction products at different locations within concrete structures. Mater Charact 60:655–668. https://doi.org/10.1016/j.matchar.2009.01.011

    Article  Google Scholar 

  160. Sims I, Poole AB (2017) Alkali-aggregate reaction in concrete: a world review. CRC Press, Boca Raton

  161. Xu GJZ, Watt DF, Hudec PP (1995) Effectiveness of mineral admixtures in reducing ASR expansion. Cem Concr Res 25:1225–1236. https://doi.org/10.1016/0008-8846(95)00115-S

    Article  Google Scholar 

  162. Prezzi M, Sposito G (1998) Alkali-Silica Reaction; Part 2: The Effect of Chemical Additives. ACI Mater J, 95:3-10. https://doi.org/10.14359/346

  163. Bleszynski RF, Thomas MDA (1998) Microstructural studies of alkali-silica reaction in fly ash concrete immersed in alkaline solutions. Adv Cem Based Mater 7:66–78

    Article  Google Scholar 

  164. Shehata MH, Thomas MDA (2000) The effect of fly ash composition on the expansion of concrete due to alkali–silica reaction. Cem Concr Res 30:1063–1072. https://doi.org/10.1016/S0008-8846(00)00283-0

    Article  Google Scholar 

  165. Kim T, Olek J (2016) The effects of lithium ions on chemical sequence of alkali-silica reaction. Cem Concr Res 79:159–168. https://doi.org/10.1016/j.cemconres.2015.09.013

    Article  Google Scholar 

  166. Dressler A (2013) Effect of de-icing salt and pozzolanic, aluminous supplementary cementitious materials on the mechanisms of damaging alkali-silica reaction in concrete. PhD thesis, TU Munich, Germany

  167. Dressler A, Urbonas L, Heinz D (2012) ASR in fly ash concrete with duran glass exposed to external alkalis. In: International Congress on Durability of Concrete. pp 1–15

  168. ASTM C1293 (2020) ASTM C1293-20a, Standard Test Method for Determination of Length Change of Concrete Due to Alkali-Silica Reaction

  169. Scrivener K, Avet F, Maraghechi H et al (2018) Impacting factors and properties of limestone calcined clay cements (LC3). Green Mater 7:3–14. https://doi.org/10.1680/jgrma.18.00029

    Article  Google Scholar 

  170. Nguyen QD, Kim T, Castel A (2020) Mitigation of alkali-silica reaction by limestone calcined clay cement (LC3). Cem Concr Res 137:106176. https://doi.org/10.1016/j.cemconres.2020.106176

    Article  Google Scholar 

  171. Favier AR, Dunant CF, Scrivener KL (2015) Alkali silica reaction mitigating properties of ternary blended cement with calcined clay and limestone. RILEM Bookseries 10:577. https://doi.org/10.1007/978-94-017-9939-3_76

    Article  Google Scholar 

  172. Li C, Ideker JH, Drimalas T (2015) The efficacy of calcined clays on mitigating kal-Silica Reaction (ASR) in mortar and its influence on microstructure. In: Scrivener K, Favier A (eds) Calcined clays for sustainable concrete. Springer, Dordrecht, pp 211–217

    Chapter  Google Scholar 

  173. Chappex T, Scrivener K (2012) Alkali fixation of C-S–H in blended cement pastes and its relation to alkali silica reaction. Cem Concr Res 42:1049–1054. https://doi.org/10.1016/j.cemconres.2012.03.010

    Article  Google Scholar 

  174. Leemann A, Bernard L, Alahrache S, Winnefeld F (2015) ASR prevention—effect of aluminum and lithium ions on the reaction products. Cem Concr Res 76:192–201. https://doi.org/10.1016/j.cemconres.2015.06.002

    Article  Google Scholar 

  175. Turk K, Kina C, Bagdiken M (2017) Use of binary and ternary cementitious blends of F-Class fly-ash and limestone powder to mitigate alkali-silica reaction risk. Constr Build Mater 151:422–427. https://doi.org/10.1016/j.conbuildmat.2017.06.075

    Article  Google Scholar 

  176. Beulah M, Prahallada MC (2012) Effect of replacement of cement by metakalion on the properties of high performance concrete subjected to hydrochloric acid attack. Int J Eng Res Appl www.ijera.com 2:33–38

  177. Said-Mansour M, Kadri EH, Kenai S et al (2011) Influence of calcined kaolin on mortar properties. Constr Build Mater 25:2275–2282. https://doi.org/10.1016/j.conbuildmat.2010.11.017

    Article  Google Scholar 

  178. Hewayde E, Nehdi ML, Allouche E, Nakhla G (2007) Using concrete admixtures for sulphuric acid resistance. Proc Inst Civ Eng Constr Mater 160:25–35. https://doi.org/10.1680/coma.2007.160.1.25

    Article  Google Scholar 

  179. Rashwan MM, Megahed AR, Essa MS (2015) Effect of local metakaolin on properties of concrete and its sulphuric acid resistance. JES J Eng Sci 43:183–199. https://doi.org/10.21608/jesaun.2015.115165

  180. Usman J, Sam ARM (2017) Acid resistance of palm oil fuel ash and metakaolin ternary blend cement mortar. Sustain Environ Res 27:181–187. https://doi.org/10.1016/j.serj.2017.02.003

    Article  Google Scholar 

  181. Girodet C, Habannet M, Bosc JL, Pera J (1997) Influence of the type of cement on the freeze-thaw resistance of the nortar phase of concrete, ed. by M.J. Setzer, R. Auberg,. In: Proceedings of the International RILEM Workshop on the Frost Resistance of Concrete. (E & FN Spon, London, 1997). pp 31–40

  182. Hassan AAA, Lachemi M, Hossain KMA (2012) Effect of metakaolin and silica fume on the durability of self-consolidating concrete. Cem Concr Compos 34:801–807. https://doi.org/10.1016/j.cemconcomp.2012.02.013

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the thorough assessment and detailed comments provided by Dr Susan Bernal Lopez. Participation of Y. Dhandapani was sponsored by the National Science Foundation (NSF) through award 1903457 and the UK Engineering and Physical Sciences Research Council (EPSRC) through Grant EP/R001642/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manu Santhanam.

Ethics declarations

Conflict of interest

There are no conflicts of interest in this paper for any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhandapani, Y., Joseph, S., Bishnoi, S. et al. Durability performance of binary and ternary blended cementitious systems with calcined clay: a RILEM TC 282-CCL, review. Mater Struct 55, 145 (2022). https://doi.org/10.1617/s11527-022-01974-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-022-01974-0

Keywords

Navigation