Skip to main content
Log in

M&S highlight: Mangat and Molloy (1994), Prediction of long term chloride concentration in concrete

  • Commentary- 75 Years of RILEM: Materials & Structures
  • Published:
Materials and Structures Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Hausmann DA (1967) Steel corrosion in concrete. How does it occur? Mater Prot 6:19–23

    Google Scholar 

  2. Treadaway KWJ, Cox RN, Brown BL (1989) Durability of corrosion resisting steels in concrete. Proc Inst Civ Eng Part 1(86):305–331

    Google Scholar 

  3. Richartz W (1969) Die Bindung von Chlorid bei der Zementerhärtung. Zement-Kalk-Gips 10:447–456

    Google Scholar 

  4. Page CL (1975) Mechanism of corrosion protection in reinforced-concrete marine structures. Nature 258(5535):514–515

    Article  Google Scholar 

  5. Page CL, Treadaway KWJ (1982) Aspects of the electrochemistry of steel in concrete. Nature 297(5862):109–115

    Article  Google Scholar 

  6. Mangat PS, Molloy BT (1994) Prediction of long-term chloride concentration in concrete. Mater Struct 27(170):338–346

    Article  Google Scholar 

  7. Buenfeld NR, Newman JB (1987) Evaluation of three methods for studying ion diffusion in cement pastes, mortars, and concrete. Mater Struct 20:3–10

    Article  Google Scholar 

  8. Lawrance CD (1989) Chloride ingres into concrete. British Cement Association, Slough

    Google Scholar 

  9. Tang L, Nilsson L-O (1992) Chloride diffusivity in high strength concrete at different ages. Nord Concr Res 11(1):162–171

    Google Scholar 

  10. Maage M, Helland S, Carlsen JE (1995) Practical non-steady state chloride transport as a part of a model for predicting the initiation period. In: Nilsson L-O, Ollivier J (eds) Chloride penetration into concrete. Springer, Berlin, pp 398–406

    Google Scholar 

  11. Thomas MDA, Bamforth PB (1999) Modelling chloride diffusion in concrete—effect of fly ash and slag. Cem Concr Res 29(4):487–495

    Article  Google Scholar 

  12. Violetta B (2002) Life-365 service life prediction model. ACI Concr Int 24(12):53–57

    Google Scholar 

  13. Samson E, Marchand J (1999) Numerical solution of the extended Nernst–Planck model. J Colloid Interface Sci 215(1):1–8

    Article  Google Scholar 

  14. Isgor OB, Weiss WJ (2019) A nearly self-sufficient framework for modelling reactive-transport processes in concrete. Mater Struct. https://doi.org/10.1617/s11527-018-1305-x

    Article  Google Scholar 

  15. Jafari Azad V, Erbektas AR, Qiao C, Isgor OB, Weiss WJ (2018) Relating the formation factor and chloride binding parameters to the apparent chloride diffusion coefficient of concrete. ASCE J Mater Civ Eng 31(2):04018392

    Article  Google Scholar 

  16. Bharadwaj K, Ghantous RM, Sahan F, Isgor OB, Weiss WJ (2021) Predicting pore volume, compressive strength, pore connectivity, and formation factor in cementitious pastes containing fly ash. Cement Concrete Compos 122:104113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Burkan Isgor.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This commentary is part of our celebration of 75 years of RILEM, highlighting Materials and Structures most highly influential and cited publications.

Highlighed paper: Mangat, P. S. & Molloy, B. T. Prediction of long term chloride concentration in concrete. 1994 Materials and Structures. 27(6), Article: 338

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isgor, O.B. M&S highlight: Mangat and Molloy (1994), Prediction of long term chloride concentration in concrete. Mater Struct 55, 41 (2022). https://doi.org/10.1617/s11527-022-01879-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-022-01879-y

Navigation