Skip to main content
Log in

Validation of alternative methodologies by using capillarity in the determination of porosity parameters of cement-lime mortars

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The capillary mechanisms in mortars were investigated in this study by using different cement-lime mortar compositions commonly used in coatings and repair mortars. Two types of natural sand (maximum diameter of 1.2 and 2.4 mm) were used in water absorption by capillarity, water absorption by immersion and boiling, and mercury intrusion porosimetry tests. The results obtained were validated by Darcy's Law for water flow in a porous medium. Findings from this study showed that mixed-binder mortars of 1:1:6 and 1:2:9 (cement: lime: sand), and cement mortars 1:3 (cement: sand) exhibited a direct relationship with the results obtained by Darcy's law. Hence, such a method can be used in determining the percentile of capillary pores in mortars. Results from this study also showed that lime mortars with a composition of 1:3 (lime: sand) do not comply with Darcy's law due to the intrinsic properties of the binder, such as hygroscopicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cotto-Ramos A, Dávila S, Torres-García W, Cáceres-Fernández A (2020) Experimental design of concrete mixtures using recycled plastic, fly ash, and silica nanoparticles. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.119207

    Article  Google Scholar 

  2. Limbachiya M, Meddah MS, Ouchagour Y (2012) Use of recycled concrete aggregate in fly-ash concrete. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2011.07.023

    Article  Google Scholar 

  3. de Azevedo ARG, Alexandre J, de Xavier G, C, Pedroti LG (2018) Recycling paper industry effluent sludge for use in mortars: a sustainability perspective. J Clean Prod. https://doi.org/10.1016/j.jclepro.2018.05.011

    Article  Google Scholar 

  4. Costa EBC, de França MS, Bergossi FLN, Borges RK (2020) Squeeze flow of mortars on brick substrate and its relation with bond strength. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.120298

    Article  Google Scholar 

  5. Kesikidou F, Stefanidou M (2019) Natural fiber-reinforced mortars. J Build Eng. https://doi.org/10.1016/j.jobe.2019.100786

    Article  Google Scholar 

  6. Risdanareni P, Schollbach K, Wang J, De Belie N (2020) The effect of NaOH concentration on the mechanical and physical properties of alkali activated fly ash-based artificial lightweight aggregate. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.119832

    Article  Google Scholar 

  7. Hatungimana D, Taşköprü C, İçhedef M et al (2019) Compressive strength, water absorption, water sorptivity and surface radon exhalation rate of silica fume and fly ash based mortar. J Build Eng. https://doi.org/10.1016/j.jobe.2019.01.011

    Article  Google Scholar 

  8. de Azevedo ARG, Alexandre J, Marvila MT et al (2019) Technological and environmental comparative of the processing of primary sludge waste from paper industry for mortar. J Clean Prod 249:119336. https://doi.org/10.1016/j.jclepro.2019.119336

    Article  Google Scholar 

  9. Bi L, Long G, Ma C, Xie Y (2020) Mechanical properties and water absorption of steam-cured mortar containing phase change composites. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.118707

    Article  Google Scholar 

  10. Azevedo ARG, Cecchin D, Carmo DF et al (2020) Analysis of the compactness and properties of the hardened state of mortars with recycling of construction and demolition waste (CDW). J Mater Res Technol. https://doi.org/10.1016/j.jmrt.2020.03.122

    Article  Google Scholar 

  11. Zhao H, Ding J, Huang Y et al (2020) Investigation on sorptivity and capillarity coefficient of mortar and their relationship based on microstructure. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.120332

    Article  Google Scholar 

  12. Luo K, Li J, Han Q et al (2020) Influence of nano-SiO2 and carbonation on the performance of natural hydraulic lime mortars. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2019.117411

    Article  Google Scholar 

  13. Marvila MT, Azevedo ARG, Monteiro SN (2020) Verification of the application potential of the mathematical models of lyse, abrams and molinari in mortars based on cement and lime. J Mater Res Technol 9:7327–7334. https://doi.org/10.1016/j.jmrt.2020.04.077

    Article  Google Scholar 

  14. Liao L, JZFZSLZW, (2020) Experimental study on compressive properties of SFRC under high strain rate with different fiber content and aspect ratio. Constr Build Mater 261:119906

    Article  Google Scholar 

  15. Spósito FA, Higuti RT, Tashima MM et al (2020) Incorporation of PET wastes in rendering mortars based on Portland cement/hydrated lime. J Build Eng. https://doi.org/10.1016/j.jobe.2020.101506

    Article  Google Scholar 

  16. ABNT (2005) NBR 15259—argamassa para assentamento e revestimento de paredes e tetos—determinação da absorção de água por capilaridade e do coeficiente de capilaridade. Assoc Bras Normas Técnicas 01.080.10; 13.220.99

  17. Zeng X, Chen L, Zheng K et al (2020) Electrical resistivity and capillary absorption in mortar with styrene-acrylic emulsion and air-entrained agent: improvement and correlation with pore structure. Constr Build Mater 255:119287. https://doi.org/10.1016/j.conbuildmat.2020.119287

    Article  Google Scholar 

  18. Sidiq A, Gravina RJ, Setunge S, Giustozzi F (2020) High-efficiency techniques and micro-structural parameters to evaluate concrete self-healing using X-ray tomography and Mercury Intrusion Porosimetry: a review. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.119030

  19. Tibbetts CM, Tao C, Paris JM, Ferraro CC (2020) Mercury intrusion porosimetry parameters for use in concrete penetrability qualification using the Katz–Thompson relationship. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.119834

    Article  Google Scholar 

  20. Wyrzykowski M, Kiesewetter R, Kaufmann J et al (2014) Pore structure of mortars with cellulose ether additions—Mercury intrusion porosimetry study. Cem Concr Compos 53:25–34. https://doi.org/10.1016/j.cemconcomp.2014.06.005

    Article  Google Scholar 

  21. Alderete N, Villagrán Y, Mignon A et al (2017) Pore structure description of mortars containing ground granulated blast-furnace slag by mercury intrusion porosimetry and dynamic vapour sorption. Constr Build Mater 145:157–165. https://doi.org/10.1016/j.conbuildmat.2017.03.245

    Article  Google Scholar 

  22. Xue S, Zhang P, Bao J et al (2020) Comparison of Mercury Intrusion Porosimetry and multi-scale X-ray CT on characterizing the microstructure of heat-treated cement mortar. Mater Charact 160:110085. https://doi.org/10.1016/j.matchar.2019.110085

    Article  Google Scholar 

  23. Elia P, Nativ-Roth E, Zeiri Y, Porat Z (2016) Determination of the average pore-size and total porosity in porous silicon layers by image processing of SEM micrographs. Microporous Mesoporous Mater. https://doi.org/10.1016/j.micromeso.2016.01.007

    Article  Google Scholar 

  24. Inagaki M, Suwa T (2001) Pore structure analysis of exfoliated graphite using image processing of scanning electron micrographs. Carbon NY. https://doi.org/10.1016/S0008-6223(00)00199-8

    Article  Google Scholar 

  25. Ziegler A, Decorps M, Remy C (1992) T2 measurements with the Carr–Purcell–Meiboom–Gill sequence in the inhomogeneous RF field of surface coils. J Magn Reson. https://doi.org/10.1016/0022-2364(92)90344-7

    Article  Google Scholar 

  26. Li B, Chen Y (2016) Influence of dry density on soil-water retention curve of unsaturated soils and its mechanism based on mercury intrusion porosimetry. Trans Tianjin Univer. https://doi.org/10.1007/s12209-016-2744-5

    Article  Google Scholar 

  27. Maes M, De Belie N (2016) Service life estimation of cracked and healed concrete in marine environment. In: Concrete solutions—proceedings of concrete solutions, 6th international conference on concrete repair (2016)

  28. Azevedo AR, Marvila MT, Zanelato EB, Alexandre J (2020) Development of mortar for laying and coating with pineapple fibers e revestimento com fibras de abacaxi, pp 187–193. https://doi.org/10.1590/1807-1929/agriambi.v24n3p187-193

  29. Marvila MT, Alexandre J, Azevedo ARG et al (2019) Study on the replacement of the hydrated lime by kaolinitic clay in mortars. Adv Appl Ceram 118:373–380. https://doi.org/10.1080/17436753.2019.1595266

    Article  Google Scholar 

  30. NBR 13276 (2016) Argamassa para assentamento e revestimento de paredes e tetos—determinação do índice de consistência. Assoc Bras Normas Técnicas. 01.080.10; 13.220.99

  31. Azevedo ARG, França BR, Alexandre J et al (2018) Influence of sintering temperature of a ceramic substrate in mortar adhesion for civil construction. J Build Eng. https://doi.org/10.1016/j.jobe.2018.05.026

    Article  Google Scholar 

  32. Marvila MT, Azevedo ARG, Barroso LS et al (2020) Gypsum plaster using rock waste: a proposal to repair the renderings of historical buildings in Brazil. Constr Build Mater 250:118786. https://doi.org/10.1016/j.conbuildmat.2020.118786

    Article  Google Scholar 

  33. ABNT (2005) NBR 13279—Argamassa para assentamento e revestimento de paredes e tetos—determinação da resistência à tração na flexão e à compressão. Assoc Bras Normas Técnicas

  34. Marvila MT, Azevedo ARG, Alexandre J et al (2019) Mortars with pineapple fibers for use in structural reinforcement. Charact Miner Metals Mat. https://doi.org/10.1007/978-3-030-05749-7_72

  35. Marvila MT, Azevedo ARG, Alexandre J et al (2020) Study of the compressive strength of mortars as a function of material composition, workability, and specimen geometry. Model Simul Eng 2020:1–6. https://doi.org/10.1155/2020/1676190

    Article  Google Scholar 

  36. Álvarez-Quintana S, Carmona FJ, Palacio L et al (2020) Water viscosity in confined nanoporous media and flow through nanofiltration membranes. Microporous Mesoporous Mater 303:110289. https://doi.org/10.1016/j.micromeso.2020.110289

    Article  Google Scholar 

  37. Chechko VE, Gotsulskiy VY, Malomuzh NP (2020) Surprising peculiarities of the shear viscosity for water and alcohols. J Mol Liq 318:114096. https://doi.org/10.1016/j.molliq.2020.114096

    Article  Google Scholar 

  38. Boli E, Katsavrias T, Voutsas E (2020) Viscosities of pure protic ionic liquids and their binary and ternary mixtures with water and ethanol. Fluid Phase Equilib 520:112663. https://doi.org/10.1016/j.fluid.2020.112663

    Article  Google Scholar 

  39. Yousif AM, Snowball R, D’Antuono MF et al (2020) Water droplet surface tension method—an innovation in quantifying saponin content in quinoa seed. Food Chem. https://doi.org/10.1016/j.foodchem.2020.128483

    Article  Google Scholar 

  40. Tahery R, Khosharay S (2017) Surface tension of binary mixtures of dimethylsulfoxide + methanol, ethanol and propanol between 293.15 and 308.15 K. J Mol Liq 247:354–365. https://doi.org/10.1016/j.molliq.2017.10.032

    Article  Google Scholar 

  41. ABNT (2011) NBR 9778—argamassa e concreto endurecidos -Determinação da absorção de água, índice de vazios e massa específica. Assoc Bras Normas Técnicas

  42. Hall C, Hoff WD, Taylor SC et al (1993) Water anomaly in capillary liquid absorption by cement-based materials. J Mater Sci Lett 14:1178–1181. https://doi.org/10.1007/BF00291799

    Article  Google Scholar 

  43. Ding Z, Li D-F, Wang Y-S et al (2020) Water distribution characteristics and research with capillary absorption for magnesium phosphate cement-coated cement pastes. Constr Build Mater 265:120319. https://doi.org/10.1016/j.conbuildmat.2020.120319

    Article  Google Scholar 

  44. Zhang J, Lin C, Dong B et al (2020) Inverse modeling deduction of pore distribution in cement materials from capillary absorption features. Cem Concr Compos 109:103557. https://doi.org/10.1016/j.cemconcomp.2020.103557

    Article  Google Scholar 

  45. Oliveira A, Pereira AS, Lemos PC et al (2020) Effect of innovative bioproducts on air lime mortars. J Build Eng. https://doi.org/10.1016/j.jobe.2020.101985

    Article  Google Scholar 

  46. Gummerson RJ, Hall C, Hoff WD (1980) Water movement in porous building materials—II. Hydraulic suction and sorptivity of brick and other masonry materials. Build Environ 15:101–108. https://doi.org/10.1016/0360-1323(80)90015-3

    Article  Google Scholar 

  47. Ren F, Zhou C, Zeng Q et al (2019) The dependence of capillary sorptivity and gas permeability on initial water content for unsaturated cement mortars. Cem Concr Compos 104:103356. https://doi.org/10.1016/j.cemconcomp.2019.103356

    Article  Google Scholar 

  48. Lawrence M, Walker P, Zhou Z (2012) Influence of interfacial material pore structure on the strength of the Brick/Lime Mortar Bond. Historic mortars. Springer, Dordrecht, pp 373–381

    Chapter  Google Scholar 

  49. (2014) lime mortar masonry. In: Dictionary geotechnical engineering/Wörterbuch GeoTechnik. Springer, Berlin, Heidelberg, pp 800–800

  50. Torres I, Matias G, Faria P (2020) Natural hydraulic lime mortars—the effect of ceramic residues on physical and mechanical behaviour. J Build Eng 32:101747. https://doi.org/10.1016/j.jobe.2020.101747

    Article  Google Scholar 

  51. Zhang D, Zhao J, Wang D et al (2018) Comparative study on the properties of three hydraulic lime mortar systems: natural hydraulic lime mortar, cement-aerial lime-based mortar and slag-aerial lime-based mortar. Constr Build Mater 186:42–52. https://doi.org/10.1016/j.conbuildmat.2018.07.053

    Article  Google Scholar 

  52. Maria S (2010) Methods for porosity measurement in lime-based mortars. Constr Build Mater 24:2572–2578. https://doi.org/10.1016/j.conbuildmat.2010.05.019

    Article  Google Scholar 

  53. Azevedo ARG, Marvila MT, Rocha HA, et al (2020) Use of glass polishing waste in the development of ecological ceramic roof tiles by the geopolymerization process. Int J Appl Ceram Technol. https://doi.org/10.1111/ijac.13585

  54. Azevedo ARG et al (2020) Capillary absorption evaluation of different mortars applied in civil construction. In: Li J et al. (eds) Characterization of minerals, metals, and materials 2020. The minerals, metals & materials series. Springer, Cham. https://doi.org/10.1007/978-3-030-36628-5_54

  55. Santos RF, de Cássia Silva Sant’ana Alvarenga R, Mendes B, et al (2018) Addition of dregs in mixed mortar: evaluation of physical and mechanical properties, pp 419–427

  56. Liu H, Zhao Y, Peng C et al (2016) Improvement of compressive strength of lime mortar with carboxymethyl cellulose. J Mater Sci 51:9279–9286. https://doi.org/10.1007/s10853-016-0174-3

    Article  Google Scholar 

  57. de Malheiro RM, C, Meira GR, Lima MS de, (2014) Influência da camada do revestimento de argamassa na penetração de cloretos em estruturas de concreto. Ambient Construído 14:41–55. https://doi.org/10.1590/S1678-86212014000100005

    Article  Google Scholar 

  58. Diamond S (2000) Mercury porosimetry. Cem Concr Res 30:1517–1525. https://doi.org/10.1016/S0008-8846(00)00370-7

    Article  Google Scholar 

  59. Neshat SS, Okuno R, Pope GA (2020) Simulation of solvent treatments for fluid blockage removal in tight formations using coupled three-phase flash and capillary pressure models. J Pet Sci Eng 195:107442. https://doi.org/10.1016/j.petrol.2020.107442

    Article  Google Scholar 

  60. Rizzo G, Megna B (2008) Characterization of hydraulic mortars by means of simultaneous thermal analysis. J Therm Anal Calorim 92:173–178. https://doi.org/10.1007/s10973-007-8757-5

    Article  Google Scholar 

  61. Movilla-Quesada D, Vega-Zamanillo Á, Castro-Fresno D et al (2015) Sustainability in construction works: reuse of sludge from tunnel boring in lime mortars. Appl Clay Sci 114:402–406. https://doi.org/10.1016/j.clay.2015.05.019

    Article  Google Scholar 

  62. Silva BA, Ferreira Pinto AP, Gomes A, Candeias A (2021) Short- and long-term properties of lime mortars with water-reducers and a viscosity-modifier. J Build Eng 43:103086. https://doi.org/10.1016/j.jobe.2021.103086

    Article  Google Scholar 

  63. Wygocka-Domagałło A, Garbalińska H (2020) The effect of pore structure on the water sorption coefficient of cement mortars reinforced with 12 mm polypropylene fibres. Constr Build Mater 248:118606. https://doi.org/10.1016/j.conbuildmat.2020.118606

    Article  Google Scholar 

  64. Amaral LF, Girondi Delaqua GC, Nicolite M et al (2020) Eco-friendly mortars with addition of ornamental stone waste—a mathematical model approach for granulometric optimization. J Clean Prod 248:119283. https://doi.org/10.1016/j.jclepro.2019.119283

    Article  Google Scholar 

  65. de Azevedo ARG, Marvila MT, da Barroso L, S et al (2019) Effect of granite residue incorporation on the behavior of mortars. Materials (Basel). https://doi.org/10.3390/ma12091449

    Article  Google Scholar 

  66. Marvila MT, Alexandre J, de Azevedo ARG, Zanelato EB (2019) Evaluation of the use of marble waste in hydrated lime cement mortar based. J Mater Cycles Waste Manag 21:1250–1261. https://doi.org/10.1007/s10163-019-00878-6

    Article  Google Scholar 

  67. Marvila MT, Azevedo ARG, Alexandre J, et al (2020) Circular economy in cementitious ceramics: Replacement of hydrated lime with a stoichiometric balanced combination of clay and marble waste. Int J Appl Ceram Technol. https://doi.org/10.1111/ijac.13634

  68. Loureiro AMS, Paz SPA, Veiga M, do R, Angélica RS, (2020) Assessment of compatibility between historic mortars and lime-METAKAOLIN restoration mortars made from amazon industrial waste. Appl Clay Sci 198:105843. https://doi.org/10.1016/j.clay.2020.105843

    Article  Google Scholar 

  69. Chang A, Sun H, Zhang Y et al (2019) Spatial fractional Darcy’s law to quantify fluid flow in natural reservoirs. Phys A Stat Mech its Appl 519:119–126. https://doi.org/10.1016/j.physa.2018.11.040

    Article  MathSciNet  Google Scholar 

  70. Zhang X, Zhang X, Taira H, Liu H (2019) Error of Darcy’s law for serpentine flow fields: dimensional analysis. J Power Sour 412:391–397. https://doi.org/10.1016/j.jpowsour.2018.11.071

    Article  Google Scholar 

  71. Cabalar AF, Akbulut N (2016) Evaluation of actual and estimated hydraulic conductivity of sands with different gradation and shape. Springerplus 5:820. https://doi.org/10.1186/s40064-016-2472-2

    Article  Google Scholar 

  72. Shin CH (2018) A numerical study on the transient aspects of porous flows and the applicability of Darcy’s friction flow relation. J Mech Sci Technol 32:1613–1623. https://doi.org/10.1007/s12206-018-0316-4

    Article  Google Scholar 

  73. Silva BA, Ferreira Pinto AP, Gomes A, Candeias A (2020) Comparative analysis of the behaviour of integral water-repellents on lime mortars. Constr Build Mater 261:120344. https://doi.org/10.1016/j.conbuildmat.2020.120344

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of CERIS (Civil Engineering Research and Innovation for Sustainability) and FCT (Foundation for Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afonso R. G. de Azevedo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marvila, M.T., de Azevedo, A.R.G., Ferreira, R.L.S. et al. Validation of alternative methodologies by using capillarity in the determination of porosity parameters of cement-lime mortars. Mater Struct 55, 19 (2022). https://doi.org/10.1617/s11527-021-01877-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-021-01877-6

Keywords

Navigation