Skip to main content

Advertisement

Log in

Digital printing of mortar in carrier liquid: comparison of approaches to predict print stability

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Nowadays, 3D printing of cantilevered shape poses a great challenge within the digital construction through a carrier liquid as a temporary formwork. This technique allows the printing of truss bars shapes, hollow cylinders and act as a leap reducing the utilization of materials and the global carbon footprint. To transfer this new concept to the industrial process, it is essential to predict the stability of the cementitious material’s shape in the carrier liquid. In this work, three different criteria were investigated, the printed cementitious mortar and the carrier liquid attached to the rheological properties are taken into study. Rheometry measurements have been carried out on both cement-based materials and the carrier liquids. A cantilevered shape is printed with a home-made 3D printer. A simple stability criterion which is independent of the final shape is first highlighted. It is reliable to give a first approximation of the stability at the exit of the nozzle regarding the material properties whatever was the element shape. Besides, two different approaches based on the mechanical strength approach and the final geometry of the printed shape have also been proposed. The experimental results show that the reliability of these different approaches to predict the stability of the extruded materials or final shape are finally confirmed by flow visualizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Buswell RA, Leal de Silva WR, Jones SZ, Dirrenberger J (2018) 3D printing using concrete extrusion: a roadmap for research. Cem Concr Res 112:37–49. https://doi.org/10.1016/j.cemconres.2018.05.006

    Article  Google Scholar 

  2. Buswell RA et al (2020) A process classification framework for defining and describing digital fabrication with concrete. Cem Concr Res 134:106068. https://doi.org/10.1016/j.cemconres.2020.106068

    Article  Google Scholar 

  3. Gibson I, Rosen D, Stucker B (2015) Direct digital manufacturing. In: Gibson I, Rosen D, Stucker B (eds) Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing. Springer, New York, NY, pp 375–397

    Chapter  Google Scholar 

  4. Perrot A, Rangeard D, Pierre A (2016) Structural built-up of cement-based materials used for 3D-printing extrusion techniques. Mater Struct 49(4):1213–1220. https://doi.org/10.1617/s11527-015-0571-0

    Article  Google Scholar 

  5. Lowke D, Dini E, Perrot A, Weger D, Gehlen C, Dillenburger B (2018) Particle-bed 3D printing in concrete construction – possibilities and challenges. Cem Concr Res 112:50–65. https://doi.org/10.1016/j.cemconres.2018.05.018

    Article  Google Scholar 

  6. Weger D, Pierre A, Perrot A, Kränkel T, Lowke D, Gehlen C (2021) Penetration of Cement Pastes into Particle-Beds: A Comparison of Penetration Models. Materials 14(2). https://doi.org/10.3390/ma14020389

  7. Hack N, Lauer WV (2014) Mesh‐mould: robotically fabricated spatial meshes as reinforced concrete formwork. https://doi.org/10.1002/ad.1753

  8. Lloret Fritschi E, Reiter L, Wangler T, Gramazio F, Kohler M, Flatt RJ (2017) Smart Dynamic Casting: Slipforming with Flexible Formwork - Inline Measurement and Control. In: HPC/CIC Tromsø 2017, Paper no. 27. Norwegian Concrete Association. https://doi.org/10.3929/ethz-b-000219663

  9. Mechtcherine V et al (2020) Extrusion-based additive manufacturing with cement-based materials – production steps, processes, and their underlying physics: a review. Cem Concr Res 132:106037. https://doi.org/10.1016/j.cemconres.2020.106037

    Article  Google Scholar 

  10. Roussel N (2018) Rheological requirements for printable concretes. Cem Concr Res 112:76–85. https://doi.org/10.1016/j.cemconres.2018.04.005

    Article  Google Scholar 

  11. Duballet R, Baverel O, Dirrenberger J (2017) Classification of building systems for concrete 3D printing. Autom Constr 83:247–258. https://doi.org/10.1016/j.autcon.2017.08.018

    Article  Google Scholar 

  12. Liravi F, Toyserkani E (2018) Additive manufacturing of silicone structures: a review and prospective. Addit Manuf 24:232–242. https://doi.org/10.1016/j.addma.2018.10.002

    Article  Google Scholar 

  13. Ozbolat IT, Moncal KK, Gudapati H (2017) Evaluation of bioprinter technologies. Addit Manuf 13:179–200. https://doi.org/10.1016/j.addma.2016.10.003

    Article  Google Scholar 

  14. Feinberg AW, Miller JS (2017) Progress in three-dimensional bioprinting. MRS Bull 42(8):557–562. https://doi.org/10.1557/mrs.2017.166

    Article  Google Scholar 

  15. O’Bryan CS et al (2017) Three-dimensional printing with sacrificial materials for soft matter manufacturing. MRS Bull 42(08):571–577. https://doi.org/10.1557/mrs.2017.167

    Article  Google Scholar 

  16. Rhoné J, Thomas A (2019) Soliquid is the startup doing large-scale 3D printing in suspension. 3Dnatives

  17. Hack N, Dressler I, Brohmann L, Gantner S, Lowke D, Kloft H (2020) Injection 3D concrete printing (I3DCP): basic principles and case studies. Materials 13(5):1093. https://doi.org/10.3390/ma13051093

    Article  Google Scholar 

  18. Chaves Figueiredo S et al (2019) An approach to develop printable strain hardening cementitious composites. Mater Des. https://doi.org/10.1016/j.matdes.2019.107651

    Article  Google Scholar 

  19. Suiker ASJ, Wolfs RJM, Lucas SM, Salet TAM (2020) Elastic buckling and plastic collapse during 3D concrete printing. Cem Concr Res 135:106016. https://doi.org/10.1016/j.cemconres.2020.106016

    Article  Google Scholar 

  20. Benamara A, Pierre A, Kaci A, Melinge Y (2020) 3D Printing of a Cement-based Mortar in a Complex Fluid Suspension: Analytical Modeling and Experimental Tests. In: Bos F, Lucas S, Wolfs R, Salet T (eds) Second RILEM International Conference on Concrete and Digital Fabrication. DC 2020. RILEM Bookseries, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-030-49916-7_76

  21. Marchon D, Kawashima S, Bessaies-Bey H, Mantellato S, Ng S (2018) Hydration and rheology control of concrete for digital fabrication: Potential admixtures and cement chemistry. Cem Concr Res 112:96–110. https://doi.org/10.1016/j.cemconres.2018.05.014

    Article  Google Scholar 

  22. Kazemian A, Yuan X, Cochran E, Khoshnevis B (2017) Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture. Constr Build Mater 145:639–647. https://doi.org/10.1016/j.conbuildmat.2017.04.015

    Article  Google Scholar 

  23. SE Tylose GmbH & Co.KG, Ed.(2005) Tylose MH 10000 KG4. GmbH & Co.KG TDS

  24. Perrot A, Lanos C, Melinge Y, Estellé P (2007) Mortar physical properties evolution in extrusion flow. Rheol Acta 46(8):1065–1073. https://doi.org/10.1007/s00397-007-0195-6

    Article  Google Scholar 

  25. Lubrizol and Noveon, “Carbopol® Ultrez 20 Polymer.” Noveon Technical dara sheet, Nov. 2002.

  26. Coussot P, Tocquer L, Lanos C, Ovarlez G (2009) Macroscopic vs. local rheology of yield stress fluids. J Non-Newton Fluid Mech 158(1):85–90. https://doi.org/10.1016/j.jnnfm.2008.08.003

    Article  Google Scholar 

  27. Pierre A, Lanos C, Estellé P (2013) Extension of spread-slump formulae for yield stress evaluation. Appl Rheol 23(6):63849. https://doi.org/10.3933/ApplRheol-23-63849

    Article  Google Scholar 

  28. Younes E, Himl M, Stary Z, Bertola V, Burghelea T (2020) On the elusive nature of Carbopol gels: ‘model’, weakly thixotropic, or time-dependent viscoplastic materials? J Non-Newton Fluid Mech 281:104315. https://doi.org/10.1016/j.jnnfm.2020.104315

    Article  MathSciNet  Google Scholar 

  29. Dinkgreve M, Fazilati M, Denn MM, Bonn D (2018) Carbopol: from a simple to a thixotropic yield stress fluid. J Rheol 62(3):773–780. https://doi.org/10.1122/1.5016034

    Article  Google Scholar 

  30. Neutralizing Carbopol and Pemulen in Aqueous and Hydroalcoholic Systems. Lubrizol Technical data sheet, Sep. 16, 2009, Accessed: Jun. 11, 2019

  31. Kaci A, Chaouche M, Andréani P-A, Brossas H (2009) Rheological behaviour of render mortars. Appl Rheol 19(1):137941–137948. https://doi.org/10.1515/arh-2009-0004

    Article  Google Scholar 

  32. Roussel N, Ovarlez G, Garrault S, Brumaud C (2012) The origins of thixotropy of fresh cement pastes. Cem Concr Res 42(1):148–157. https://doi.org/10.1016/j.cemconres.2011.09.004

    Article  Google Scholar 

  33. Coussot P (2005) Rheometry of pastes, suspensions, and granular materials. Wiley, New York

    Book  Google Scholar 

  34. Ovarlez G (2011) Caractérisation rhéologique des fluides à seuil. Rhéologie 20:28–43

    Google Scholar 

  35. Estellé P, Lanos C, Perrot A, Amziane S (2008) Processing the vane shear flow data from couette analogy. Appl Rheol 18:340371–340376. https://doi.org/10.1515/arh-2008-0009

    Article  Google Scholar 

  36. Jossic L, Magnin A (2001) Drag and stability of objects in a yield stress fluid. AIChE J 47(12):2666–2672. https://doi.org/10.1002/aic.690471206

    Article  Google Scholar 

  37. Beris AN, Tsamopoulos JA, Armstrong RC, Brown RA (1985) Creeping motion of a sphere through a Bingham plastic. J Fluid Mech 158:219–244. https://doi.org/10.1017/S0022112085002622

    Article  MathSciNet  MATH  Google Scholar 

  38. Tabuteau H, Coussot P, de Bruyn JR (2007) Drag force on a sphere in steady motion through a yield-stress fluid. J Rheol 51(1):125–137. https://doi.org/10.1122/1.2401614

    Article  Google Scholar 

  39. Coussot P (2005) Rheophysics of pastes and granular materials. In: Rheometry of pastes, suspensions, and granular materials, John Wiley & Sons, Ltd, 2005, pp 41–80

  40. Mettler LK, Wittel FK, Flatt RJ, Herrmann HJ (2016) Evolution of strength and failure of SCC during early hydration. Cem Concr Res 89:288–296. https://doi.org/10.1016/j.cemconres.2016.09.004

    Article  Google Scholar 

  41. Megson THG (2005) Structural and stress analysis, 2nd edn. Elsevier Butterworth Heineman, Amsterdam

    Google Scholar 

Download references

Funding

This study has been funded by grant from: CY Foundation through the project: “Conception d’un Dispositif pour-Impression 4D” IDEX (Initiative of Excellence)-I-SITE: Initiative-Science-Innovation-Territory- Economy) of the Paris-Seine University: Additive Manufacturing for the Future of Construction. ED-SI: Ecole doctorale de science et ingénierie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdeslam Benamara.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benamara, A., Pierre, A., Kaci, A. et al. Digital printing of mortar in carrier liquid: comparison of approaches to predict print stability. Mater Struct 54, 119 (2021). https://doi.org/10.1617/s11527-021-01713-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-021-01713-x

Keywords

Navigation