Skip to main content
Log in

Slip rate effects and cyclic behaviour of textile-to-matrix bond in textile reinforced mortar composites

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The structural effectiveness of textile reinforced mortar (TRM) composites relies on their load transfer capacity to the substrate and the interaction between textile and mortar. The bond plays a crucial role in mechanism of TRM composites. Despite some recent investigations, a deep understanding still needs to be gained on the textile-to-mortar bond to develop suitable analytical and numerical predictive models, improve test methods, and orient design criteria. This work describes a laboratory study in which pull-out tests were carried out to investigate the effect of the slip rate and cyclic loading on the textile-to-mortar bond behaviour. Alkali-resistant glass fabric and sgalvanised ultra-high tensile strength steel cords embedded in two different lime-based mortars were tested. The pull-out response was sensitive to the strain rate at low rates. Cyclic loading produced a strength degradation, which reduced with the number of cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Barton B, Wobbe E, Dharani LR et al (2005) Characterization of reinforced concrete beams strengthened by steel reinforced polymer and grout (SRP and SRG) composites. Mater Sci Eng A 412:129–136. https://doi.org/10.1016/j.msea.2005.08.151

    Article  Google Scholar 

  2. Triantafillou TC, Papanicolaou CG (2005) Textile reinforced mortars (TRM) versus fiber reinforced polymers (FRP) as strengthening materials of concrete structures. In: the 7th International Symposium on Fiber- Reinforced (FRP) Polymer Reinforcement for Concrete Structures (FRPRCS-7): ACI SP-230–6. pp 99–118

  3. Ghiassi B (2019) Mechanics and durability of textile reinforced mortars: a review of recent advances and open issues. RILEM Tech Lett 4:130–137. https://doi.org/10.21809/rilemtechlett.2019.99

    Article  Google Scholar 

  4. Loreto G, Babaeidarabad S, Leardini L, Nanni A (2015) RC beams shear-strengthened with fabric-reinforced-cementitious-matrix (FRCM) composite. Int J Adv Struct Eng 7:341–352. https://doi.org/10.1007/s40091-015-0102-9

    Article  Google Scholar 

  5. Napoli A, Realfonzo R (2015) Reinforced concrete beams strengthened with SRP/SRG systems: experimental investigation. Constr Build Mater 93:654–677. https://doi.org/10.1016/j.conbuildmat.2015.06.027

    Article  Google Scholar 

  6. Pino V, Akbari Hadad H, Caso De, y Basalo F, et al (2017) Performance of FRCM-strengthened RC beams subject to fatigue. J Bridg Eng 22:04017079. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001107

    Article  Google Scholar 

  7. Raoof SM, Koutas LN, Bournas DA (2017) Textile-reinforced mortar (TRM) versus fibre-reinforced polymers (FRP) in flexural strengthening of RC beams. Constr Build Mater 151:279–291. https://doi.org/10.1016/j.conbuildmat.2017.05.023

    Article  Google Scholar 

  8. Borri A, Casadei P, Castori G, Hammond J (2009) Strengthening of brick masonry arches with externally bonded steel reinforced composites. J Compos Constr 13:468–475. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000030

    Article  Google Scholar 

  9. Papanicolaou C, Triantafillou T, Lekka M (2011) Externally bonded grids as strengthening and seismic retrofitting materials of masonry panels. Constr Build Mater 25:504–514. https://doi.org/10.1016/j.conbuildmat.2010.07.018

    Article  Google Scholar 

  10. Babaeidarabad S, De Caso F, Nanni A (2014) Out-of-plane behavior of URM walls strengthened with fabric-reinforced cementitious matrix composite. J Compos Constr 549:457. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000457

    Article  Google Scholar 

  11. Marcari G, Basili M, Vestroni F (2017) Experimental investigation of tuff masonry panels reinforced with surface bonded basalt textile-reinforced mortar. Compos Part B Eng 108:131–142. https://doi.org/10.1016/j.compositesb.2016.09.094

    Article  Google Scholar 

  12. Bellini A, Incerti A, Bovo M, Mazzotti C (2018) Effectiveness of FRCM reinforcement applied to masonry walls subject to axial force and out-of-plane loads evaluated by experimental and numerical studies. Int J Archit Herit 12:1323246. https://doi.org/10.1080/15583058.2017.1323246

    Article  Google Scholar 

  13. De Santis S, Roscini F, de Felice G (2018) Full-scale tests on masonry vaults strengthened with steel reinforced grout. Compos Part B Eng 141:20–36. https://doi.org/10.1016/j.compositesb.2017.12.023

    Article  Google Scholar 

  14. De Santis S, De Canio G, de Felice G et al (2019) Out-of-plane seismic retrofitting of masonry walls with textile reinforced mortar composites. Bull Earthq Eng 17:6265–6300. https://doi.org/10.1007/s10518-019-00701-5

    Article  Google Scholar 

  15. De Santis S, de Felice G, Roscini F (2019) Retrofitting of masonry vaults by basalt textile-reinforced mortar overlays. Int J Archit Herit 13:1061–1077. https://doi.org/10.1080/15583058.2019.1597947

    Article  Google Scholar 

  16. de Felice G, De Santis S, Garmendia L et al (2014) Mortar-based systems for externally bonded strengthening of masonry. Mater Struct 47:2021–2037. https://doi.org/10.1617/s11527-014-0360-1

    Article  Google Scholar 

  17. De Santis S, Hadad HA, Caso De, y Basalo F, et al (2018) Acceptance criteria for tensile characterization of fabric-reinforced cementitious matrix systems for concrete and masonry repair. J Compos Constr 22:04018048. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000886

    Article  Google Scholar 

  18. Meriggi P, de Felice G, De Santis S (2020) Design of the out-of-plane strengthening of masonry walls with textile reinforced mortar composites. Constr Build Mater 240:117946. https://doi.org/10.1016/j.conbuildmat.2019.117946

    Article  Google Scholar 

  19. D’Ambrisi A, Feo L, Focacci F (2013) Experimental and analytical investigation on bond between Carbon-FRCM materials and masonry. Compos Part B Eng 46:15–20. https://doi.org/10.1016/j.compositesb.2012.10.018

    Article  Google Scholar 

  20. Sneed LH, D’Antino T, Carloni C (2014) Investigation of bond behavior of polyparaphenylene benzobisoxazole fiber-reinforced cementitious matrix composite-concrete interface. ACI Mater J 111:568. https://doi.org/10.14359/51686604

    Article  Google Scholar 

  21. Razavizadeh A, Ghiassi B, Oliveira DV (2014) Bond behavior of SRG-strengthened masonry units: testing and numerical modeling. Constr Build Mater 64:387–397. https://doi.org/10.1016/j.conbuildmat.2014.04.070

    Article  Google Scholar 

  22. Carozzi FG, Poggi C (2015) Mechanical properties and debonding strength of fabric reinforced cementitious matrix (FRCM) systems for masonry strengthening. Compos Part B Eng 70:215–230. https://doi.org/10.1016/j.compositesb.2014.10.056

    Article  Google Scholar 

  23. De Santis S (2017) Bond behaviour of steel reinforced grout for the extrados strengthening of masonry vaults. Constr Build Mater 150:367–382. https://doi.org/10.1016/j.conbuildmat.2017.06.010

    Article  Google Scholar 

  24. de Felice G, D’Antino T, De Santis S et al (2020) Lessons learned on the tensile and bond behaviour of fabric reinforced cementitious matrix (FRCM) composites. Front Built Environ 6:1–15. https://doi.org/10.3389/fbuil.2020.00005

    Article  Google Scholar 

  25. Brameshuber W (2006) RILEM TC 201-TRC: Textile reinforced concrete- state-of-the-art. RILEM, Bagneux

    Google Scholar 

  26. Mobasher B (2012) Mechanics of fiber and textile reinforced cement composites. Taylor & Francis Group, London- New York

    Google Scholar 

  27. Häußler-Combe U, Hartig J (2007) Bond and failure mechanisms of textile reinforced concrete ( TRC ) under uniaxial tensile loading. Cem Concr Compos 29:279–289. https://doi.org/10.1016/j.cemconcomp.2006.12.012

    Article  Google Scholar 

  28. Hegger J, Will N, Bruckermann O, Voss S (2006) Load-bearing behaviour and simulation of textile reinforced concrete. Mater Struct 39:765–776. https://doi.org/10.1617/s11527-005-9039-y

    Article  Google Scholar 

  29. Banholzer B (2006) Bond of a strand in a cementitious matrix. Mater Struct 39:1015–1028. https://doi.org/10.1617/s11527-006-9115-y

    Article  Google Scholar 

  30. D’Antino T, Pellegrino C, Carloni C et al (2014) Experimental analysis of the bond behavior of glass, carbon, and steel FRCM composites. Key Eng Mater 624:371–378. https://doi.org/10.4028/www.scientific.net/KEM.624.371

    Article  Google Scholar 

  31. D’Antino T, Carrozzi FG, Colombi P, Poggi C (2017) A new pull-out test to study the bond behavior of fiber reinforced cementitious composites. Key Eng Mater 747:258–265. https://doi.org/10.4028/www.scientific.net/KEM.747.258

    Article  Google Scholar 

  32. Dalalbashi A, Ghiassi B, Oliveira DV, Freitas A (2018) Effect of test setup on the fiber-to-mortar pull-out response in TRM composites: experimental and analytical modeling. Compos Part B Eng 143:250–268. https://doi.org/10.1016/j.compositesb.2018.02.010

    Article  Google Scholar 

  33. Ghiassi B, Oliveira DV, Marques V et al (2016) Multi-level characterization of steel reinforced mortars for strengthening of masonry structures. Mater Des 110:903–913. https://doi.org/10.1016/j.matdes.2016.08.034

    Article  Google Scholar 

  34. Dalalbashi A, Ghiassi B, Oliveira DV, Freitas A (2018) Fiber-to-mortar bond behavior in TRM composites: effect of embedded length and fiber configuration. Compos Part B Eng 152:43–57. https://doi.org/10.1016/j.compositesb.2018.06.014

    Article  Google Scholar 

  35. Dalalbashi A, Ghiassi B, Oliveira DV (2019) Textile-to-mortar bond behaviour in lime-based textile reinforced mortars. Constr Build Mater 227:116682. https://doi.org/10.1016/j.conbuildmat.2019.116682

    Article  Google Scholar 

  36. Le HV, Moon D, Kim DJ (2018) Effects of ageing and storage conditions on the interfacial bond strength of steel fibers in mortars. Constr Build Mater 170:129–141. https://doi.org/10.1016/j.conbuildmat.2018.03.064

    Article  Google Scholar 

  37. (2012) Planitop HDM Restauro- 1071–2–2012. In: MAPEI. https://www.mapei.com/it/en/products-and-solutions/products/detail/planitop-hdm

  38. (2016) GeoCalce Fino. In: Kerakoll. https://shop.vittoriosabato.it/uploads/products/attachments/561_KERAKOLL BIOCALCE FINO KG25.pdf

  39. (2019) Mapegride G220- 1033–7–2019 (GB). In: MAPEI. https://www.mapei.com/it/en/products-and-solutions/products/detail/mapegrid-g-220

  40. (2014) GeoSteel G600 Code: E865 2014/07. In: Kerakoll. https://products.kerakoll.com/en/p/geosteel-g600

  41. (2005) ASTM C109/C109M-05, Standard test method for compressive strength of hydraulic cement mortars (Using 2-in. or [50-mm] Cube Specimens)

  42. (1999) BS EN 1015–11, Methods of test for mortar for masonry. Determination of flexural and compressive strength of hardened mortar

  43. Redon C, Li VC, Wu C et al (2001) Measuring and modifying interface properties of PVA fibers in ECC matrix. J Mater Civ Eng 13:399–406. https://doi.org/10.1061/(ASCE)0899-1561(2001)13:6(399)

    Article  Google Scholar 

  44. Lin Z, Kanda T, Li VC (1999) On interface property characterization and performance of fiber reinforced cementitious composites. J Concr Sci Eng RILEM 1:173–184

    Google Scholar 

  45. Naik DL, Sharma A, Chada RR et al (2019) Modified pullout test for indirect characterization of natural fiber and cementitious matrix interface properties. Constr Build Mater 208:381–393. https://doi.org/10.1016/j.conbuildmat.2019.03.021

    Article  Google Scholar 

  46. Boshoff WP, Mechtcherine V, van Zijl GPAG (2009) Characterising the time-dependant behaviour on the single fibre level of SHCC: Part 2: The rate effects on fibre pull-out tests. Cem Concr Res 39:787–797. https://doi.org/10.1016/j.cemconres.2009.06.006

    Article  Google Scholar 

  47. Li VC, Wu HC, Chan YW (1995) Interfacial property tailoring for pseudo strain- hardening cementitious composites. Adv Technol Des Fabr Compos Mater Struct Eng Appl Fract Mech 14:261–268. https://doi.org/10.1007/978-94-015-8563-7_18

    Article  Google Scholar 

  48. Li VC, Wu H-C, Chan Y-W (1996) Effect of plasma treatment of polyethylene fibers on interface and ementitious composite properties. J Am Ceram Soc 79:700–704. https://doi.org/10.1111/j.1151-2916.1996.tb07932.x

    Article  Google Scholar 

  49. Lin Z, Li VC (1997) Crack bridging in fiber reinforced cementitious composites with slip-hardening interfaces. J Mech Phys Solids 45:763–787. https://doi.org/10.1016/S0022-5096(96)00095-6

    Article  Google Scholar 

  50. Wang Y, Li VC, Backer S (1988) Analysis of synthetic fiber pull-out from a cement matrix. Mater Res Soc Symp Bond Cem Compos 114:159–166. https://doi.org/10.1557/PROC-114-159

    Article  Google Scholar 

  51. Wang Y, Lf VC, Backer S (1988) Modelling of fibre pull-out from a cement matrix. Int J Cem Compos 10:143–149. https://doi.org/10.1016/0262-5075(88)90002-4

    Article  Google Scholar 

Download references

Acknowledgements

Kerakoll SpA (Sassuolo, MO, Italy) is kindly acknowledged for supplying reinforcement materials. Additionally, the authors wish also to thank Andrea Della Torre (master student) who helped with the experimental part. This work was partly financed by FEDER funds through the Competitivity Factors Operational Programme (COMPETE) and by national funds through the Foundation for Science and Technology (FCT) within the scope of the project POCI-01–0145-FEDER-007633. The first author has received grant from the Foundation for Science and Technology (FCT), with grant number: SFRH/BD/131282/2017. The second author acknowledges funding by Regione Lazio within the Research Project “SiCura, Sustainable technologies for the seismic protection of the cultural heritage” (2018–2020, N. 15136), by the Italian Civil Protection Department within the Research Project “ReLUIS” (2019–2021) and by the Italian Ministry of Education, University and Research (MIUR), in the frame of the Departments of Excellence Initiative (2018–2022), attributed to the Department of Engineering of Roma Tre University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Dalalbashi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalalbashi, A., De Santis, S., Ghiassi, B. et al. Slip rate effects and cyclic behaviour of textile-to-matrix bond in textile reinforced mortar composites. Mater Struct 54, 108 (2021). https://doi.org/10.1617/s11527-021-01706-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-021-01706-w

Keywords

Navigation