Skip to main content

Hygroscopic and mechanical behaviour of earth bricks

Abstract

Considering the challenges imposed by the current movement towards green development, earth construction appears to offer promising possibilities for improving thermal comfort, energy consumption and indoor humidity regulation. However, the difficulties in predicting the behaviour of earth as a construction material is an obstacle to the development of this technique. The principal objective of this study is to establish the scientific bases needed to predict its hygroscopic and mechanical behaviour as a function of the relative humidity that is one of the main factors controlling the home confort. For this purpose, it is necessary to find correlations between the variability of the soils (density, pore size distribution, chemical and mineralogical composition) and the hygromechanical behaviour of the earth bricks (adsorption, hydric buffering and compressive strength). The results, in terms of hydric and mechanical behaviour specific to each brick, show that the behaviour of this material depends on several factors, namely, the SiO2/Al2O3 ratio, the porosity rate, the pore size distribution, the nature of the clay minerals, and their content.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    Chel A, Tiwari GN (2009) Thermal performance and embodied energy analysis of a passive house - case study of vault roof mud-house in India. J Appli Energ 86:1956–1969. https://doi.org/10.1016/j.apenergy.2008.12.033

    Article  Google Scholar 

  2. 2.

    Shukla A, Tiwari GN, Sodha MS (2009) Embodied energy analysis of adobe house. J Renew Energy 34:755–761. https://doi.org/10.1016/j.renene.2008.04.002

    Article  Google Scholar 

  3. 3.

    Zami MS, Lee A (2010) Economic benifits of contemporary earth construction in low-cost urban housing - state of the art review. J Build Appra 5:259–271

    Article  Google Scholar 

  4. 4.

    Morton T, Stevenson F, Taylor B, Charlton Smith N (2005) Low cost earth earth brick construction: 2 Kirk Park, Dalguise - monitoring and evaluation. ARC Architects, Scotland

    Google Scholar 

  5. 5.

    Minke G (2006) Building with earth. Design and technology of a sustainable architecture. Birkhauser, Switzerland

    Google Scholar 

  6. 6.

    Allinson D, Hall M (2010) Hygrthermal analysis of a stabilished rammed earth test building in the UK. J Energy Build 42:845–852. https://doi.org/10.1016/j.enbuild.2009.12.005

    Article  Google Scholar 

  7. 7.

    Hansen E.J.D.P, Hansen M.H (2002) Unfired clay bricks - moisture properties and compressive strength. In: Proceedings of the 6th Symposium on Building Physics in the Nordic Countries. Norwegian University of Science and Technology, Trondheim, Norway

  8. 8.

    Jaquin P, Augarde C, Toll DG, Gallipoli D (2009) The strength of unstabilised rammed earth materials. J Geotech 59:487–490. https://doi.org/10.1680/geot.2007.00129

    Article  Google Scholar 

  9. 9.

    Guettala A, Abibsi A, Houari H (2006) Durability study of stabilized earth concrete under both laboratory and climatic conditions exposure. J Constr Build Mater 20:119–127. https://doi.org/10.1016/j.conbuildmat.2005.02.001

    Article  Google Scholar 

  10. 10.

    Jeannet J, Pollet G (1986) La thermique du pisé: Modernité de la construction en terre. Conference proceedings

  11. 11.

    Lindberg E, Akander J (2002) Power-optimised Ventilation Considering Moist-buffering of the Surface Layer of Clay. Moderner Lehmbau. Ed. Peter Steingass

  12. 12.

    McGregor F, Heath A, Shea A, Lawrence M (2014) The moisture buffering capacity of unfired clay mansonry. J Build Environ 82:599–607. https://doi.org/10.1016/j.buildenv.2014.09.027

    Article  Google Scholar 

  13. 13.

    Caporale A, Parisi F, Asprone D, Luciano R, Prota A (2015) Comparative micromechanical assessment of adobe and clay brick masonry assemblages based on experimental data sets. J Compo Struct 120:208–220. https://doi.org/10.1016/j.compstruct.2014.09.046

    Article  Google Scholar 

  14. 14.

    Silveira D, Varum H, Costa A, Carvalho J (2015) Mechanical properties and behavior of traditional adobe wall panels of the aveiro district. J Mater Civ Engin 27:9. https://doi.org/10.1016/j.conbuildmat.2011.08.046

    Article  Google Scholar 

  15. 15.

    Illampas R, Ioannou I, Charmpis D-C (2014) Adobe bricks under compression: experimental investigation and derivation of stress-strain equation. J Constr Build Mater 53:83–90. https://doi.org/10.1016/j.conbuildmat.2013.11.103

    Article  Google Scholar 

  16. 16.

    Gouny F (2013) Nouveau système constructif multimatériaux bois/liant géopolymère/brique de terre crue: formulation, caractérisation et transfert d'échelle. PhD thesis, University of Limoges in French

  17. 17.

    Laou L (2017) Evaluation du comportement mécanique sous sollicitations thermo-hydriques d’un mur multimatériaux (bois, terre crue, liants minéraux) lors de sa construction et de son utilisation. PhD thesis, University of Limoges in French

  18. 18.

    Aubert J, Maillard P, Morel JC, Al Rafii M (2016) Towards a simple compressive strength test for earth bricks? J Mater Struct 49:1641–1654. https://doi.org/10.13140/RG.2.1.4641.4242

    Article  Google Scholar 

  19. 19.

    Aubert JE, Fabbri A, Morel JC, Maillard P (2013) An earth block with a compressive strength higher than 45 MPa! J Constr Build Mater 47:366–369. https://doi.org/10.1016/j.conbuildmat.2013.05.068

    Article  Google Scholar 

  20. 20.

    Pkla A, Mesbah A, Rigassi V, Morel JC (2003) Comparaison de méthodes d’essais de mesures des caractéristiques mécaniques des mortiers de terre. J Mater Struct 36:108–117. https://doi.org/10.1007/BF02479524

    Article  Google Scholar 

  21. 21.

    Laborel-Préneron A, Aubert J-E, Magniont C, Maillard P, Poirier C (2017) Effect of plant aggregates on mechanical properties of earth bricks. J Mater Civ Eng 29:12. https://doi.org/10.1016/j.conbuildmat.2016.02.119

    Article  Google Scholar 

  22. 22.

    Rodríguez-Mariscal J-D, Solís M, Cifuentes H (2018) Methodological issues for the mechanical characterization of unfired earth bricks. J Constr Build Mater 175:804–814. https://doi.org/10.1016/j.conbuildmat.2018.04.118

    Article  Google Scholar 

  23. 23.

    Zonno G, Aguilar R, Boroschek R, Lourenço PB (2019) Analysis of the long and short-term effects of temperature and humidity on the structural properties of adobe buildings using continuous monitoring. J Eng Struct. https://doi.org/10.1016/j.engstruct.2019.109299

    Article  Google Scholar 

  24. 24.

    Zonno G, Aguilar R, Boroschek R, Lourenço, PB (2019) Experimental analysis of the thermohygrometric effects on the dynamic behavior of adobe systems. J Constr Build Mater 208:158–174. https://doi.org/10.1016/j.conbuildmat.2019.02.140

    Article  Google Scholar 

  25. 25.

    Heath A, Walker P, Fourie C, Lawrence M (2009) Compressive strength of extruded unfired clay masonry units. J Const Mater 162:105–112. https://doi.org/10.1680/coma.2009.162.3.105

    Article  Google Scholar 

  26. 26.

    Mollion V (2009) Etude du comportement mécanique du pisé. Master’s dissertation, Ecole Nationale des Travaux Publics de l'Etat

  27. 27.

    Pirat PE, Filloux R (2012) Etude de l’effet d’échelle sur le matériau terre. Projet d’Initiation à la Recherche et au Développement, INSA, Lyon

    Google Scholar 

  28. 28.

    Walker P, Keable R, Martin J, Maniatidis V (2005) Rammed earth. Design and construction guidelines. BRE Bookshop, Watford

    Google Scholar 

  29. 29.

    Maniatidis V, Walker P (2003) Developing rammed earth for UK housing. Natural Building Technology Group, University of Bath, United Kingdom

    Google Scholar 

  30. 30.

    DIN 18945 (2013) Blocs de terre - Termes et définitions, exigences, méthodes d'essai - Lehmsteine - Begriffe, Anforderungen, Prüfverfahren

  31. 31.

    Bourgès A (2003) Study on the physical-mechanical properties on artificial adobe and determination of the water influence. Internal report of TERRA Project

  32. 32.

    Barras C (2010) Contribution à l’élaboration d’un mélange terre-chanvre. Internship report, ENTPE Lyon

    Google Scholar 

  33. 33.

    Fontaine L (2004) Cohésion et comportement mécanique de la terre comme matériau de construction. DPEA Report, INSA-Lyon

    Google Scholar 

  34. 34.

    Kornmann M (2005) Matériaux de construction en terre cuite – Fabrication et, propriétés. Septima, Geneva

    Google Scholar 

  35. 35.

    Jacqus G, Berger S, Gibiat V, Jean P, Villot M, Ciukaj S (2011) A homogenised vibratory model for predicting the acoustic properties of hollow brick wall. J Sound Vibra 330:3400–3409. https://doi.org/10.1016/j.jsv.2011.02.015

    Article  Google Scholar 

  36. 36.

    Bourret J (2012) Elaboration de céramiques alvéolaires à base de kaolin: propriétés thermiques et mécaniques. PhD thesis, University of Limoges in French

  37. 37.

    NF P94–057 (1992) Sols: reconnaissance et essais - Analyse granulométrique des sols, Méthode par sédimentation

  38. 38.

    Moore DM, Robert C, Reynolds JR (1997) X-Ray diffraction and the identification and analysis of clay minerals, 2nd edn. Oxford University Press, USA

    Google Scholar 

  39. 39.

    NF EN ISO 12571 (2013) Performance hygrothermique des matériaux et produits pour le bâtiment – Détermination des propriétés de sorption hygroscopique

  40. 40.

    Rode C, Peuhkuri RH, Mortensen LH, Hansen KK, Time B, Gustavsen A, Harderup LE (2005) Moisture Buffering of Building Materials. Technical University of Denmark. Nordisk Innovations Center, ISSN 1601-2917, ISBN 87-7877-195-1

  41. 41.

    Quoc-Bao B (2008) Stabilité des structures en pisé: Durabilité, caractéristiques mécaniques. PhD thesis, INSA-Lyon in French

  42. 42.

    NF EN ISO 12570 (2000) Performance hygrothermique des matériaux et produits pour le bâtiment - Détermination du taux d'humidité par séchage à chaud

  43. 43.

    NF EN ISO 14688-1 (2003) Geotechnical investigation and testing - Identification and classification of soil - Part 1: identification and description

  44. 44.

    Gourouza M, Zanguina A, Natatou I, Boos A (2013) Characterization of a mixed clay Niger. J Mater Sci Chem Eng 1:29–39

    Google Scholar 

  45. 45.

    Dondi M, Principi P, Raimondo M, Zanarini G (2003) Water vapour permeability of clay bricks. J Constr Build Mater 17:253–258. https://doi.org/10.1016/S0950-0618(02)00117-4

    Article  Google Scholar 

  46. 46.

    El Fgaier F (2013) Conception, produtcion et qualification des briques en terre cuite et en terre crue. PhD thesis, University of Lille in French

  47. 47.

    Medjelekh D (2015) Caractérisation multi-échelle du comportement thermo hydrique des enveloppes hygroscopiques. PhD thesis, University of Limoges in French

  48. 48.

    Morel JC, Pkla A, Walker P (2007) Compressive strength testing of compressed earth blocks. J Constr Build Mater 21:303–309. https://doi.org/10.1016/j.conbuildmat.2005.08.021

    Article  Google Scholar 

  49. 49.

    Olivier M (1994) Le matériau terre, compactage, comportement, application aux structures en blocs sur terre. PhD thesis, INSA-Lyon in French

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to L. Laou or J. E. Aubert.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Laou, L., Aubert, J.E., Yotte, S. et al. Hygroscopic and mechanical behaviour of earth bricks. Mater Struct 54, 116 (2021). https://doi.org/10.1617/s11527-021-01701-1

Download citation

Keywords

  • Unfired clay brick
  • Anisotropy
  • Physical properties
  • Microstructure
  • Chemical composition
  • Mineralogical composition
  • Hygroscopic properties
  • Mechanical properties