Skip to main content
Log in

The dispersing performances of polycarboxylate superplasticizer in cement pastes prepared with deionized water and seawater

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Comparative study on the dispersing performances of polycarboxylate superplasticizer (PCE) in cement pastes prepared with deionized water and seawater was conducted by involving techniques of fluidity tests, measurement of adsorption amount of PCE, isothermal calorimetry, X-ray diffraction and specific surface area analysis etc. It is shown that the seawater leads to a visible drop of the initial fluidity of the PCE plasticized cement paste and faster loss of the fluidity over hydration time, compared to deionized water. Mg2+ ion present in seawater reduces the dispersing efficiency of PCE in fresh cement paste (fcps) due to the possible complexation between Mg2+ ions and PCE. SO42− ion present in the seawater notably promotes the initial formation of AFt crystals and increases the specific surface area of fcps, which consequently consumes a large amount of PCE molecules and results in a faster fluidity loss over hydration time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Qu F, Li W, Dong W, Tam VWY, Yu T (2021) Durability deterioration of concrete under marine environment from material to structure: acritical review. J Build Eng 35. https://doi.org/10.1016/j.jobe.2020.102074

  2. Van Belleghem B, Kessler S, Van den Heede P, Van Tittelboom K, De Belie N (2018) Chloride induced reinforcement corrosion behavior in self-healing concrete with encapsulated polyurethane. Cem Concr Res 113:130–139. https://doi.org/10.1016/j.cemconres.2018.07.009

    Article  Google Scholar 

  3. Zhu WJ, Francois R, Fang Q, Zhang DL (2016) Influence of long-term chloride diffusion in concrete and the resulting corrosion of reinforcement on the serviceability of RC beams. Cem Concr Compos 71:144–152. https://doi.org/10.1016/j.cemconcomp.2016.05.003

    Article  Google Scholar 

  4. Justnes H, Kim MO, Ng S, Qian X (2016) Methodology of calculating required chloride diffusion coefficient for intended service life as function of concrete cover in reinforced marine structures. Cem Concr Compos 73:316–323. https://doi.org/10.1016/j.cemconcomp.2016.08.006

    Article  Google Scholar 

  5. Youssef MA, Meshaly ME, Elansary AA (2017) Ductile corrosion-free GFRP-stainless steel reinforced concrete elements. Compos Struct 182:124–131. https://doi.org/10.1016/j.compstruct.2017.09.037

    Article  Google Scholar 

  6. Naser MZ, Hawileh RA, Abdalla JA (2019) Fiber-reinforced polymer composites in strengthening reinforced concrete structures: A critical review. Eng Struct 198:20. https://doi.org/10.1016/j.engstruct.2019.109542

    Article  Google Scholar 

  7. Xiao JZ, Qiang CB, Nanni A, Zhang KJ (2017) Use of sea-sand and seawater in concrete construction: Current status and future opportunities. Constr Build Mater 155:1101–1111. https://doi.org/10.1016/j.conbuildmat.2017.08.130

    Article  Google Scholar 

  8. Mohammed TU, Hamada H, Yamaji T (2004) Performance of seawater-mixed concrete in the tidal environment. Cem Concr Res 34(4):593–601. https://doi.org/10.1016/j.cemconres.2003.09.020

    Article  Google Scholar 

  9. Shi ZG, Shui ZH, Li Q, Geng HN (2015) Combined effect of metakaolin and sea water on performance and microstructures of concrete. Constr Build Mater 74:57–64. https://doi.org/10.1016/j.conbuildmat.2014.10.023

    Article  Google Scholar 

  10. Etxeberria M, Fernandez JM, Limeira J (2016) Secondary aggregates and seawater employment for sustainable concrete dyke blocks production: Case study. Constr Build Mater 113:586–595. https://doi.org/10.1016/j.conbuildmat.2016.03.097

    Article  Google Scholar 

  11. Yamada K, Takahashi T, Hanehara S, Matsuhisa M (2000) Effects of the chemical structure on the properties of polycarboxylate-type superplasticizer. Cem Concr Res 30(2):197–207. https://doi.org/10.1016/s0008-8846(99)00230-6

    Article  Google Scholar 

  12. Zhang YR, Kong XM, Lu ZB, Lu ZC, Hou SS (2015) Effects of the charge characteristics of polycarboxylate superplasticizers on the adsorption and the retardation in cement pastes. Cem Concr Res 67:184–196. https://doi.org/10.1016/j.cemconres.2014.10.004

    Article  Google Scholar 

  13. Zhang LR, Kong XM, Xing F, Dong BQ, Wang F (2018) Working mechanism of post-acting polycarboxylate superplasticizers containing acrylate segments. J Appl Polym Sci 135(5):13. https://doi.org/10.1002/app.45753

    Article  Google Scholar 

  14. Zhang LR, Miao X, Kong XM, Zhou SM (2019) Retardation effect of PCE superplasticizers with different architectures and their impacts on early strength of cement mortar. Cem Concr Compos 104:12. https://doi.org/10.1016/j.cemconcomp.2019.103369

    Article  Google Scholar 

  15. Yoshioka K, Tazawa E, Kawai K, Enohata T (2002) Adsorption characteristics of superplasticizers on cement component minerals. Cem Concr Res 32(10):1507–1513. https://doi.org/10.1016/s0008-8846(02)00782-2

    Article  Google Scholar 

  16. Plank J, Hirsch C (2007) Impact of zeta potential of early cement hydration phases on superplasticizer adsorption. Cem Concr Res 37(4):537–542. https://doi.org/10.1016/j.cemconres.2007.01.007

    Article  Google Scholar 

  17. Uchikawa H, Hanehara S, Sawaki D (1997) The role of steric repulsive force in the dispersion of cement particles in fresh paste prepared with organic admixture. Cem Concr Res 27(1):37–50. https://doi.org/10.1016/s0008-8846(96)00207-4

    Article  Google Scholar 

  18. Yoshioka K, Sakai E, Daimon M, Kitahara A (1997) Role of steric hindrance in the performance of superplasticizers for concrete. J Am Ceram Soc 80(10):2667–2671

    Article  Google Scholar 

  19. Zhang YR, Kong XM (2015) Correlations of the dispersing capability of NSF and PCE types of superplasticizer and their impacts on cement hydration with the adsorption in fresh cement pastes. Cem Concr Res 69:1–9. https://doi.org/10.1016/j.cemconres.2014.11.009

    Article  Google Scholar 

  20. Flatt RJ, Houst YF (2001) A simplified view on chemical effects perturbing the action of superplasticizers. Cem Concr Res 31(8):1169–1176. https://doi.org/10.1016/s0008-8846(01)00534-8

    Article  Google Scholar 

  21. Shi D, Yao Y, Ye JY, Zhang WS (2019) Effects of seawater on mechanical properties, mineralogy and microstructure of calcium silicate slag-based alkali-activated materials. Constr Build Mater 212:569–577. https://doi.org/10.1016/j.conbuildmat.2019.03.288

    Article  Google Scholar 

  22. Morillas H, Maguregui M, Garcia-Florentino C, Marcaida L, Madariaga JM (2016) Study of particulate matter from Primary/Secondary Marine Aerosol and anthropogenic sources collected by a self-made passive sampler for the evaluation of the dry deposition impact on built heritage. Sci Total Environ 550:285–296. https://doi.org/10.1016/j.scitotenv.2016.01.080

    Article  Google Scholar 

  23. Yamada K, Ogawa S, Hanehara S (2001) Controlling of the adsorption and dispersing force of polycarboxylate-type superplasticizer by sulfate ion concentration in aqueous phase. Cem Concr Res 31(3):375–383. https://doi.org/10.1016/s0008-8846(00)00503-2

    Article  Google Scholar 

  24. Han S, Plank J (2013) Mechanistic study on the effect of sulfate ions on polycarboxylate superplasticisers in cement. Adv Cem Res 25(4):200–207. https://doi.org/10.1680/adcr.12.00002

    Article  Google Scholar 

  25. He Y, Zhang X, Ji T, Shui LL (2019) Effect of carboxylic density on sulfate sensitivity of polycarboxylate superplasticizers. KSCE J Civ Eng 23(12):5163–5172. https://doi.org/10.1007/s12205-019-2283-4

    Article  Google Scholar 

  26. Wu B, Chun B-W, Gu L, Kuhl TL (2019) Adsorption properties of poly(carboxylate ether) to negatively charged surfaces in high-salt conditions. Cem Concr Res 118:102–110. https://doi.org/10.1016/j.cemconres.2019.02.003

    Article  Google Scholar 

  27. Lu ZC, Liu SY, Stephan D (2019) Effects of cations on the yield stress of a highly concentrated suspension of glass beads with the addition of polycarboxylate superplasticizer. Colloid Surf A-Physicochem Eng Asp 575:176–183. https://doi.org/10.1016/j.colsurfa.2019.05.015

    Article  Google Scholar 

  28. Kirby GH, Lewis JA (2004) Comb polymer architecture effects on the rheological property evolution of concentrated cement suspensions. J Am Ceram Soc 87(9):1643–1652. https://doi.org/10.1111/j.1551-2916.2004.01643.x

    Article  Google Scholar 

  29. Dupont L, Foissy A, Mercier R, Mottet B (1993) Effect of calcium-ions on the adsorption of polyacrylic onto alumina. J Colloid Interface Sci 161(2):455–464. https://doi.org/10.1006/jcis.1993.1489

    Article  Google Scholar 

  30. Sun J, Bergstrom L, Gao L (2001) Effect of magnesium ions on the adsorption of poly(acrylic acid) onto alumina. J Am Ceram Soc 84(11):2710–2712. https://doi.org/10.1111/j.1151-2916.2001.tb01078.x

    Article  Google Scholar 

  31. Tian HW, Kong XM, Su T, Wang DM (2019) Comparative study of two PCE superplasticizers with varied charge density in Portland cement and sulfoaluminate cement systems. Cem Concr Res 115:43–58. https://doi.org/10.1016/j.cemconres.2018.10.003

    Article  Google Scholar 

  32. Ran QP, Qiao M, Liu JP (2014) Influence of Ca2+ on the performance of poly(acrylic acid)-g-poly(ethylene glycol) comb-like copolymers in cement suspensions. Iran Polym J 23(9):663–669. https://doi.org/10.1007/s13726-014-0259-2

    Article  Google Scholar 

  33. Zhao J, Yu K, Hu YN, Li SJ, Tan X, Chen FW, Yu ZM (2011) Discharge behavior of Mg-4 wt%Ga-2 wt%Hg alloy as anode for seawater activated battery. Electrochim Acta 56(24):8224–8231. https://doi.org/10.1016/j.electacta.2011.06.065

    Article  Google Scholar 

  34. Yu K, Tan X, Hu YN, Chen FW, Li SJ (2011) Microstructure effects on the electrochemical corrosion properties of Mg-4.1% Ga-2.2% Hg alloy as the anode for seawater-activated batteries. Corrosion Sci 53 (5):2035–2040. https://doi.org/10.1016/j.corsci.2011.01.040

  35. Su T, Kong XM, Tian HW, Wang DM (2019) Effects of comb-like PCE and linear copolymers on workability and early hydration of a calcium sulfoaluminate belite cement. Cem Concr Res 123:13. https://doi.org/10.1016/j.cemconres.2019.105801

    Article  Google Scholar 

  36. Mantellato S, Palacios M, Flatt RJ (2016) Impact of sample preparation on the specific surface area of synthetic ettringite. Cem Concr Res 86:20–28. https://doi.org/10.1016/j.cemconres.2016.04.005

    Article  Google Scholar 

  37. Lu Z, Kong X, Jansen D, Zhang C, Wang J, Pang X, Yin J (2020) Towards a further understanding of cement hydration in the presence of triethanolamine. Cem Concr Res 132. https://doi.org/10.1016/j.cemconres.2020.106041

  38. Plank J, Li H, Ilg M, Pickelmann J, Eisenreich W, Yao Y, Wang Z (2016) A microstructural analysis of isoprenol ether-based polycarboxylates and the impact of structural motifs on the dispersing effectiveness. Cem Concr Res 84:20–29. https://doi.org/10.1016/j.cemconres.2016.02.010

    Article  Google Scholar 

  39. Kong X, Pakusch J, Jansen D, Emmerling S, Neubauer J, Goetz-Neuhoeffer F (2016) Effect of polymer latexes with cleaned serum on the phase development of hydrating cement pastes. Cem Concr Res 84:30–40. https://doi.org/10.1016/j.cemconres.2016.02.013

    Article  Google Scholar 

  40. Jansen D, Naber C, Ectors D, Lu Z, Kong XM, Goetz-Neunhoeffer F, Neubauer J (2018) The early hydration of OPC investigated by in-situ XRD, heat flow calorimetry, pore water analysis and H-1 NMR: Learning about adsorbed ions from a complete mass balance approach. Cem Concr Res 109:230–242. https://doi.org/10.1016/j.cemconres.2018.04.017

    Article  Google Scholar 

  41. Jansen D, Neubauer J, Goetz-Neunhoeffer F, Haerzschel R, Hergeth WD (2012) Change in reaction kinetics of a Portland cement caused by a superplasticizer - Calculation of heat flow curves from XRD data. Cem Concr Res 42(2):327–332. https://doi.org/10.1016/j.cemconres.2011.10.005

    Article  Google Scholar 

  42. Hesse C, Goetz-Neunhoeffer F, Neubauer J (2011) A new approach in quantitative in-situ XRD of cement pastes: Correlation of heat flow curves with early hydration reactions. Cem Concr Res 41(1):123–128. https://doi.org/10.1016/j.cemconres.2010.09.014

    Article  Google Scholar 

  43. Ma B, Ma M, Shen XD, Li XR, Wu XD (2014) Compatibility between a polycarboxylate superplasticizer and the belite-rich sulfoaluminate cement: setting time and the hydration properties. Constr Build Mater 51:47–54. https://doi.org/10.1016/j.conbuildmat.2013.10.028

    Article  Google Scholar 

  44. Montanari L, Suraneni P, Tsui-Chang M, Khatibmasjedi M, Ebead U, Weiss J, Nanni A (2019) Hydration, pore solution, and porosity of cementitious pastes made with seawater. J Mater Civ Eng 31(8):11. https://doi.org/10.1061/(asce)mt.1943-5533.0002818

    Article  Google Scholar 

  45. Wang JJ, Liu EG, Li L (2018) Multiscale investigations on hydration mechanisms in seawater OPC paste. Constr Build Mater 191:891–903. https://doi.org/10.1016/j.conbuildmat.2018.10.010

    Article  Google Scholar 

  46. Li LG, Chen XQ, Chu SH, Ouyang Y, Kwan AKH (2019) Seawater cement paste: effects of seawater and roles of water film thickness and superplasticizer dosage. Constr Build Mater 229:10. https://doi.org/10.1016/j.conbuildmat.2019.116862

    Article  Google Scholar 

  47. Liu L, Luo X-B, Ding L, Luo S-L (2019) 4——Application of Nanotechnology in the Removal of Heavy Metal From Water. In: Luo X, Deng F (eds) Nanomaterials for the Removal of Pollutants and Resource Reutilization. Elsevier, Amsterdam, pp 83–147. https://doi.org/10.1016/B978-0-12-814837-2.00004-4

  48. Peng J, Qu J, Zhang J, Chen M, Wan T (2005) Adsorption characteristics of water-reducing agents on gypsum surface and its effect on the rheology of gypsum plaster. Cem Concr Res 35(3):527–531. https://doi.org/10.1016/j.cemconres.2004.04.016

    Article  Google Scholar 

  49. Ma Y, Qian J (2018) Influence of alkali sulfates in clinker on the hydration and hardening of Portland cement. Constr Build Mater 180:351–363. https://doi.org/10.1016/j.conbuildmat.2018.05.196

    Article  Google Scholar 

  50. Joseph S, Snellings R, Cizer Ö (2019) Activation of Portland cement blended with high volume of fly ash using Na2SO4. Cement Concr Compos 104:103417. https://doi.org/10.1016/j.cemconcomp.2019.103417

    Article  Google Scholar 

  51. Goetz-Neunhoeffer F, Neubauer J, Schwesig P (2006) Mineralogical characteristics of Ettringites synthesized from solutions and suspensions. Cem Concr Res 36(1):65–70. https://doi.org/10.1016/j.cemconres.2004.04.037

    Article  Google Scholar 

  52. Uchikawa H, Uchida S, Ogawa K, Hanehara S (1984) Influence of CaSO4·2H2O, CaSO4·12H2O and CaSO4 on the initial hydration of clinker having different burning degree. Cem Concr Res 14(5):645–656. https://doi.org/10.1016/0008-8846(84)90027-9

    Article  Google Scholar 

  53. Hanehara S, Yamada K (1999) Interaction between cement and chemical admixture from the point of cement hydration, absorption behaviour of admixture, and paste rheology. Cem Concr Res 29(8):1159–1165. https://doi.org/10.1016/s0008-8846(99)00004-6

    Article  Google Scholar 

  54. Behnood A, Van Tittelboom K, De Belie N (2016) Methods for measuring pH in concrete: a review. Constr Build Mater 105:176–188. https://doi.org/10.1016/j.conbuildmat.2015.12.032

    Article  Google Scholar 

  55. Lothenbach B, Le Saout G, Gallucci E, Scrivener K (2008) Influence of limestone on the hydration of Portland cements. Cem Concr Res 38(6):848–860. https://doi.org/10.1016/j.cemconres.2008.01.002

    Article  Google Scholar 

  56. Lothenbach B, Winnefeld F (2006) Thermodynamic modelling of the hydration of Portland cement. Cem Concr Res 36(2):209–226. https://doi.org/10.1016/j.cemconres.2005.03.001

    Article  Google Scholar 

  57. Dean JA (1999) Lange's handbook of chemistry, 15 edn.

  58. Deschner F, Winnefeld F, Lothenbach B, Seufert S, Schwesig P, Dittrich S, Goetz-Neunhoeffer F, Neubauer J (2012) Hydration of Portland cement with high replacement by siliceous fly ash. Cem Concr Res 42(10):1389–1400. https://doi.org/10.1016/j.cemconres.2012.06.009

    Article  Google Scholar 

  59. Tong K, Song X, Xiao G, Yu J (2014) Colloidal processing of Mg(OH)2 aqueous suspensions using sodium polyacrylate as dispersant. Ind Eng Chem Res 53(12):4755–4762. https://doi.org/10.1021/ie5002857

    Article  Google Scholar 

  60. Breval E (1976) C3A hydration. Cem Concr Res 6(1):129–137. https://doi.org/10.1016/0008-8846(76)90057-0

    Article  Google Scholar 

  61. Bullard JW, Jennings HM, Livingston RA, Nonat A, Scherer GW, Schweitzer JS, Scrivener KL, Thomas JJ (2011) Mechanisms of cement hydration. Cem Concr Res 41(12):1208–1223. https://doi.org/10.1016/j.cemconres.2010.09.011

    Article  Google Scholar 

  62. Corstanje WA, Stein HN, Stevels JM (1973) Hydration reactions in pastes C3S + C3A + CaSO4.2aq + H2O at 25°C.I. Cement and Concrete Research 3 (6):791–806. https://doi.org/10.1016/0008-8846(73)90012-4

  63. Ng S, Metwalli E, Müller-Buschbaum P, Plank J (2013) Occurrence of intercalation of PCE superplasticizers in calcium aluminate cement under actual application conditions, as evidenced by SAXS analysis. Cem Concr Res 54:191–198. https://doi.org/10.1016/j.cemconres.2013.09.002

    Article  Google Scholar 

  64. Zhang YR, Cai XP, Kong XM, Gao L (2017) Effects of comb-shaped superplasticizers with different charge characteristics on the microstructure and properties of fresh cement pastes. Constr Build Mater 155:441–450. https://doi.org/10.1016/j.conbuildmat.2017.08.087

    Article  Google Scholar 

  65. Winnefeld F, Becker S, Pakusch J, Gotz T (2007) Effects of the molecular architecture of comb-shaped superplasticizers on their performance in cementitious systems. Cem Concr Compos 29(4):251–262. https://doi.org/10.1016/j.cemconcomp.2006.12.006

    Article  Google Scholar 

  66. Lu Z, Kong X, Jansen D, Zhang C, Wang J, Pang X, Yin J (2020) Towards a further understanding of cement hydration in the presence of triethanolamine. Cem Concr Res 132:106041. https://doi.org/10.1016/j.cemconres.2020.106041

    Article  Google Scholar 

  67. Bensted J (1982) Effects of the clinker–gypsum grinding temperature upon early hydration of Portland cement. Cem Concr Res 12(3):341–348. https://doi.org/10.1016/0008-8846(82)90082-5

    Article  Google Scholar 

  68. Pourchet S, Regnaud L, Perez JP, Nonat A (2009) Early C3A hydration in the presence of different kinds of calcium sulfate. Cem Concr Res 39(11):989–996. https://doi.org/10.1016/j.cemconres.2009.07.019

    Article  Google Scholar 

  69. Dalas F, Pourchet S, Rinaldi D, Nonat A, Sabio S, Mosquet M (2015) Modification of the rate of formation and surface area of ettringite by polycarboxylate ether superplasticizers during early C3A–CaSO4 hydration. Cem Concr Res 69:105–113. https://doi.org/10.1016/j.cemconres.2014.12.007

    Article  Google Scholar 

  70. Vladu CM, Hall C, Maitland GC (2006) Flow properties of freshly prepared ettringite suspensions in water at 25 °C. J Colloid Interface Sci 294(2):466–472. https://doi.org/10.1016/j.jcis.2005.07.052

    Article  Google Scholar 

  71. Ferrari L, Kaufmann J, Winnefeld F, Plank J (2010) Interaction of cement model systems with superplasticizers investigated by atomic force microscopy, zeta potential, and adsorption measurements. J Colloid Interface Sci 347(1):15–24. https://doi.org/10.1016/j.jcis.2010.03.005

    Article  Google Scholar 

  72. Ferrari L, Kaufmann J, Winnefeld F, Plank J (2014) Impact of particle size on interaction forces between ettringite and dispersing comb-polymers in various electrolyte solutions. J Colloid Interface Sci 419:17–24. https://doi.org/10.1016/j.jcis.2013.12.041

    Article  Google Scholar 

  73. Jakob C, Jansen D, Ukrainczyk N, Koenders E, Pott U, Stephan D, Neubauer J (2019) Relating Ettringite formation and rheological changes during the initial cement hydration: a comparative study applying XRD analysis. Rheol Meas Model Mater 12(18):12. https://doi.org/10.3390/ma12182957

    Article  Google Scholar 

  74. Mantellato S, Palacios M, Flatt RJ (2019) Relating early hydration, specific surface and flow loss of cement pastes. Mater Struct 52(1):17. https://doi.org/10.1617/s11527-018-1304-y

    Article  Google Scholar 

  75. Zingg A, Winnefeld F, Holzer L, Pakusch J, Becker S, Gauckler L (2008) Adsorption of polyelectrolytes and its influence on the rheology, zeta potential, and microstructure of various cement and hydrate phases. J Colloid Interface Sci 323(2):301–312. https://doi.org/10.1016/j.jcis.2008.04.052

    Article  Google Scholar 

Download references

Acknowledgement

The financial supports from the National Natural Science Foundation of China (Grant No. 51778333) and from the Guo Qiang Institute-Tsinghua University (Grant No. 2019GQC003, 2019GQI2001) are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangming Kong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 361 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, X., Kong, X., Liu, X. et al. The dispersing performances of polycarboxylate superplasticizer in cement pastes prepared with deionized water and seawater. Mater Struct 54, 85 (2021). https://doi.org/10.1617/s11527-021-01676-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-021-01676-z

Keywords

Navigation