Skip to main content
Log in

Durability of natural hydraulic lime (NHL) based TRM composites through hot water immersion method

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The textile reinforced mortar (TRM) composites are widely utilized for the seismic strengthening of masonry walls subjected to in-plane and out-of-plane actions. The probability of out-of-plane failure via snap-through mechanism is dominated by the flexural characteristics of relatively slender masonry wall. In this study, a rapid and early decisive procedure is proposed to direct the design of TRM composite through the bending tests combining accelerated ageing. The durability of natural hydraulic lime based TRM composites, which is unknown in the current literature, is addressed for glass, basalt and carbon textiles. The interaction between fiber mesh and matrix is discussed regarding fiber type, the influence of impregnation, flexural performance and failure modes. For total five types of fabrics, the flexural capacities are compared at ambient conditions and then through hot water ageing test (immersion at 50 °C during 10 days). The experimental findings indicate to the importance of the interaction between fiber and matrix about the durability and ductility of TRM composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Romanazzi A, Oliveira DV, Silva RA (2019) A TRM-based compatible strengthening solution for rammed earth heritage: investigation of the bond behavior. Struct Anal Hist Constr 18:1594–1602. https://doi.org/10.1007/978-3-319-99441-3

    Article  Google Scholar 

  2. Bilotta A, Ceroni F, Nigro E, Pecce M (2017) Experimental tests on FRCM strengthening systems for tuff masonry elements. Constr Build Mater 138:114–133. https://doi.org/10.1016/j.conbuildmat.2017.01.124

    Article  Google Scholar 

  3. Girgin ZC, Yıldırım MT (2016) Usability of basalt fibres in fibre reinforced cement composites. Mater Struct Constr 49:3309–3319. https://doi.org/10.1617/s11527-015-0721-4

    Article  Google Scholar 

  4. Liu S, Zhu D, Yao Y, Shi C (2018) Effects of strain rate and temperature on the flexural behavior of basalt and glass textile-reinforced concrete. J Mater Civ Eng 30:04018172. https://doi.org/10.1061/(asce)mt.1943-5533.0002387

    Article  Google Scholar 

  5. Harajli M, ElKhatib H, San-Jose JT (2010) Static and cyclic out-of-plane response of masonry walls strengthened using textile-mortar system. J Mater Civ Eng 22:1171–1180. https://doi.org/10.1061/(asce)mt.1943-5533.0000128

    Article  Google Scholar 

  6. Ombres L, Mancuso N, Mazzuca S, Verre S (2019) Bond between carbon fabric-reinforced cementitious matrix and masonry substrate. J Mater Civ Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002561

    Article  Google Scholar 

  7. Carozzi FG, Bellini A, D’Antino T et al (2017) Experimental investigation of tensile and bond properties of Carbon-FRCM composites for strengthening masonry elements. Compos Part B Eng 128:100–119. https://doi.org/10.1016/j.compositesb.2017.06.018

    Article  Google Scholar 

  8. Donnini J, Corinaldesi V, Nanni A (2016) Mechanical properties of FRCM using carbon fabrics with different coating treatments. Compos B Eng 88:220–228. https://doi.org/10.1016/j.compositesb.2015.11.012

    Article  Google Scholar 

  9. Mechtcherine V (2016) Durability of structures made of or strengthened using textile-reinforced concrete. In: Textile fibre composites in civil engineering, pp 151–168

  10. Scheffler C, Förster T, Mäder E et al (2009) Aging of alkali-resistant glass and basalt fibers in alkaline solutions: evaluation of the failure stress by Weibull distribution function. J Non Cryst Solids 355:2588–2595. https://doi.org/10.1016/j.jnoncrysol.2009.09.018

    Article  Google Scholar 

  11. Girgin ZC (2018) Effect of slag, nano clay and metakaolin on mechanical performance of basalt fibre cementitious composites. Constr Build Mater 192:70–84. https://doi.org/10.1016/j.conbuildmat.2018.10.090

    Article  Google Scholar 

  12. Van TH, Truong GT, Choi K-K (2019) Effect of harsh conditions on the tensile behaviour of lap-spliced carbon fiber textile-reinforced mortar (TRM) with different surface treatment methods. Appl Sci 9:3087. https://doi.org/10.3390/app9153087

    Article  Google Scholar 

  13. Nadiv R, Peled A, Mechtcherine V et al (2017) Micro- and nanoparticle mineral coating for enhanced properties of carbon multifilament yarn cement-based composites. Compos B Eng 111:179–189. https://doi.org/10.1016/j.compositesb.2016.12.005

    Article  Google Scholar 

  14. Mäder E, Plonka R, Schiekel M, Hempel R (2004) Coatings on alkali-resistant glass fibres for the improvement of concrete. J Ind Text 33:191–207. https://doi.org/10.1177/1528083704039833

    Article  Google Scholar 

  15. Williams Portal N, Flansbjer M, Johannesson P et al (2016) Tensile behaviour of textile reinforcement under accelerated ageing conditions. J Build Eng 5:57–66. https://doi.org/10.1016/j.jobe.2015.11.006

    Article  Google Scholar 

  16. Micelli F, Aiello MA (2019) Residual tensile strength of dry and impregnated reinforcement fibres after exposure to alkaline environments. Compos B Eng 159:490–501. https://doi.org/10.1016/j.compositesb.2017.03.005

    Article  Google Scholar 

  17. Butler M, Mechtcherine V, Hempel S (2009) Experimental investigations on the durability of fibre-matrix interfaces in textile-reinforced concrete. Cem Concr Compos 31:221–231. https://doi.org/10.1016/j.cemconcomp.2009.02.005

    Article  Google Scholar 

  18. Butler M, Mechtcherine V, Hempel S (2010) Durability of textile reinforced concrete made with AR glass fibre: effect of the matrix composition. Mater Struct Constr 43:1351–1368. https://doi.org/10.1617/s11527-010-9586-8

    Article  Google Scholar 

  19. Colombo IG, Colombo M, Di Prisco M (2015) Tensile behavior of textile reinforced concrete subjected to freezing-thawing cycles in un-cracked and cracked regimes. Cem Concr Res 73:169–183. https://doi.org/10.1016/j.cemconres.2015.03.001

    Article  Google Scholar 

  20. Arabi N, Molez L, Rangeard D (2018) Durability of alkali-resistant glass fibers reinforced cement composite: microstructural observations of degradation. Period Polytech Civ Eng. https://doi.org/10.3311/PPci.10631

    Article  Google Scholar 

  21. Donnini J (2019) Durability of glass FRCM systems: effects of different environments on mechanical properties. Compos B Eng 174:107047. https://doi.org/10.1016/j.compositesb.2019.107047

    Article  Google Scholar 

  22. Bentur A, Mindess S (2006) Fibre reinforced cementitious composites. Routledge, Abingdon, p 624

    Book  Google Scholar 

  23. Purnell P, Beddows J (2005) Durability and simulated ageing of new matrix glass fibre reinforced concrete. Cem Concr Compos 27:875–884. https://doi.org/10.1016/j.cemconcomp.2005.04.002

    Article  Google Scholar 

  24. Hempel S, Butler M, Mechtcherine V (2015) Bond behaviour and durability of basalt fibres in cementitious matrices, pp 225–234

  25. Le Chi H, Louda P, Le Van S et al (2019) Composite performance evaluation of basalt textile-reinforced geopolymer mortar. Fibers 7:63. https://doi.org/10.3390/fib7070063

    Article  Google Scholar 

  26. Nobili A, Signorini C (2017) On the effect of curing time and environmental exposure on impregnated Carbon Fabric Reinforced Cementitious Matrix (CFRCM) composite with design considerations. Compos B Eng 112:300–313. https://doi.org/10.1016/j.compositesb.2016.12.022

    Article  Google Scholar 

  27. Signorini C, Nobili A, Cedillo González EI, Siligardi C (2018) Silica coating for interphase bond enhancement of carbon and AR-glass Textile Reinforced Mortar (TRM). Compos B Eng 141:191–202. https://doi.org/10.1016/j.compositesb.2017.12.045

    Article  Google Scholar 

  28. Pekmezci BY, Arabaci E, Ustundag C (2019) Freeze-thaw durability of lime based FRCM systems for strengthening historical masonry. Key Eng Mater 817KEM:174–181. https://doi.org/10.4028/www.scientific.net/KEM.817.174

    Article  Google Scholar 

  29. Mcmaster MG, Soane DS (1989) Water sorption in epoxy thin films. IEEE Trans Compon Hybrids Manuf Technol 12:373–386. https://doi.org/10.1109/33.35485

    Article  Google Scholar 

  30. Kajorncheappunngam S, Gupta RK, Gangarao HVS (2002) Effect of aging environment on degradation of glass-reinforced epoxy. J Compos Constr 6:61–69. https://doi.org/10.1061/(ASCE)1090-0268(2002)6:1(61)

    Article  Google Scholar 

  31. Scheffler C, Gao SL, Plonka R et al (2009) Interphase modification of alkali-resistant glass fibres and carbon fibres for textile reinforced concrete I: Fibre properties and durability. Compos Sci Technol 69:531–538. https://doi.org/10.1016/j.compscitech.2008.11.027

    Article  Google Scholar 

  32. Peled A, Bentur DY (1999) Flexural performance of cementitious composites reinforced with woven fabrics. J Mater Civ Eng 11:1–8

    Article  Google Scholar 

  33. Williams Portal N, Nyholm Thrane L, Lundgren K (2017) Flexural behaviour of textile reinforced concrete composites: experimental and numerical evaluation. Mater Struct Constr 50:1–24. https://doi.org/10.1617/s11527-016-0882-9

    Article  Google Scholar 

  34. BSEN (1999) 1015-11 Methods of test for mortar for masonry—determination of flexural and compressive strength of hardened mortar

  35. ASTM (2015) D6637—standard test method for determining tensile properties of geogrids by the single or multi-rib tensile method. i:1–6. https://doi.org/10.1520/D6637

  36. ASTM (2017) C947 standard test method for flexural properties of thin-section glass-fiber-reinforced concrete (using simple beam with third-point loading) 1. Concr Prod 03:5–7. https://doi.org/10.1520/C0947-03R16.2

    Article  Google Scholar 

  37. ASTM (2013) C1560—standard test method for hot water accelerated aging of glass-fiber reinforced. 03:3–4. https://doi.org/10.1520/C1560-03R09.2

  38. Litherland KL, Oakley DR, Proctor BA (1981) The use of accelerated ageing procedures to predict the long term strength of GRC composites. Cem Concr Res 11:455–466. https://doi.org/10.1016/0008-8846(81)90117-4

    Article  Google Scholar 

  39. ICC (2011) 434 acceptance criteria for masonry and concrete strengthening using fiber-reinforced cementitious matrix (FRCM). ICC

  40. Cohen Z, Peled A (2010) Controlled telescopic reinforcement system of fabric-cement composites—durability concerns. Cem Concr Res 40:1495–1506. https://doi.org/10.1016/j.cemconres.2010.06.003

    Article  Google Scholar 

  41. Signorini C, Sola A, Nobili A, Siligardi C (2019) Lime-cement textile reinforced mortar (TRM) with modified interphase. J Appl Biomater Funct Mater. https://doi.org/10.1177/2280800019827823

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. C. Girgin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunes, M.E., Pekmezci, B.Y. & Girgin, Z.C. Durability of natural hydraulic lime (NHL) based TRM composites through hot water immersion method. Mater Struct 54, 24 (2021). https://doi.org/10.1617/s11527-020-01608-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-020-01608-3

Keywords

Navigation