Skip to main content
Log in

The effects of calcium formate on the early hydration of alkali silicate activated slag

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Alkali silicate activated slag (AAS) most commonly develops high strength, but is usually accompanied by fast setting. In this study, slag was activated by a potassium silicate solution possessing different moduli (Ms = 0.7 and 1). The workability of the alkali activated slag mortar, at 4 and 20 min, was assessed by means of a mini-slump test. The sample with an Ms of 1 was not workable after 20 min. Calcium formate was subsequently added to extend the workable time of the mortar but this lowered its compressive strength. Ultrasonic measurements indicated a slower solid phase development in the AAS paste, in the presence of calcium formate, which was associated with a decreased amount of C–S–H gel in the hydrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Komljenović M (2015) Mechanical strength and Young’s modulus of alkali-activated cement-based binders. In: Pacheco-Torgal F (ed) Handbook of alkali-activated cements, mortars and concretes. Woodhead Publishing, Cambridge, pp 171–215

    Chapter  Google Scholar 

  2. Tänzer R, Buchwald A, Stephan D (2015) Effect of slag chemistry on the hydration of alkali-activated blast-furnace slag. Mater Struct 48(3):629–641

    Article  Google Scholar 

  3. Haha MB, Lothenbach B, Le Saout G, Winnefeld F (2011) Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—part I: effect of MgO. Cem Concr Res 41(9):955–963

    Article  Google Scholar 

  4. Haha MB, Lothenbach B, Le Saout G, Winnefeld F (2012) Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag—part II: effect of Al2O3. Cem Concr Res 42(1):74–83

    Article  Google Scholar 

  5. Wang S-D, Scrivener KL, Pratt PL (1994) Factors affecting the strength of alkali-activated slag. Cem Concr Res 24(6):1033–1043

    Article  Google Scholar 

  6. Krizan D, Zivanovic B (2002) Effects of dosage and modulus of water glass on early hydration of alkali–slag cements. Cem Concr Res 32(8):1181–1188

    Article  Google Scholar 

  7. Dakhane A, Peng Z, Marzke R, Neithalath N (2014) Comparative analysis of the influence of sodium and potassium silicate solutions on the kinetics and products of slag activation. Adv Civ Eng Mater 3(1):371–387

    Google Scholar 

  8. Tänzer R, Jin Y, Stephan D (2017) Alkali activated slag binder: effect of cations from silicate activators. Mater Struct 50(1):1

    Article  Google Scholar 

  9. Shi C, Krivenko PV, Roy DM (2006) Alkali-activated cements and concretes: theory and application. Taylor & Francis, London

    Book  Google Scholar 

  10. Zhang Z, Zhou D, Li F, Pan Z, Yang N (2008) Selection of retarder of alkali activated slag cement. Concrete 8:63–68 (in Chinese)

    Google Scholar 

  11. Brough AR, Holloway M, Sykes J, Atkinson A (2000) Sodium silicate-based alkali-activated slag mortars. Part II. The retarding effect of additions of sodium chloride or malic acid. Cem Concr Res 30(9):1375–1379

    Article  Google Scholar 

  12. Chang JJ, Yeih W, Hung CC (2005) Effects of gypsum and phosphoric acid on the properties of sodium silicate-based alkali-activated slag pastes. Cement Concr Compos 27(1):85–91

    Article  Google Scholar 

  13. Gong C, Yang N (2000) Effect of phosphate on the hydration of alkali-activated red mud–slag cementitious material. Cem Concr Res 30(7):1013–1016

    Article  Google Scholar 

  14. Kalina L, Bílek V, Novotný R, Mončeková M, Másilko J, Koplík J (2016) Effect of Na3PO4 on the hydration process of alkali-activated blast furnace slag. Materials 9:(5)

    Article  Google Scholar 

  15. Schultze W (1995) Dispersions-Silikatsysteme: Grundlagen - Formulierungen - Problemlösungen. Expert-Verlag, Renningen-Malmsheim

    Google Scholar 

  16. Snellings R (2013) Solution-Controlled Dissolution of Supplementary Cementitious Material Glasses at pH 13: The Effect of Solution Composition on Glass Dissolution Rates. J Am Ceram Soc 96(8):2467–2475

    Article  Google Scholar 

  17. Suraneni P, Palacios M, Flatt RJ (2016) New insights into the hydration of slag in alkaline media using a micro-reactor approach. Cem Concr Res 79:209–216

    Article  Google Scholar 

  18. DIN EN 1015-3 (2007) Prüfverfahren für Mörtel für Mauerwerk – Teil 3: Bestimmung der Konsistenz von Frischmörtel (mit Ausbreittisch). 2004th ed; 91.100.10. Deutsches Institut für Normung e. V, Berlin, Germany

  19. DIN EN 196-1 (2015) Prüfverfahren für Zement – Teil 1: Bestimmung der Festigkeit. 2015th ed; 91.100.10. Deutsches Institut für Normung e. V, Berlin, Germany

  20. von Daake H, Stephan D (2016) Setting of cement with controlled superplasticizer addition monitored by ultrasonic measurements and calorimetry. Cement Concr Compos 66:24–37

    Article  Google Scholar 

  21. Alonso MM, Gismera S, Blanco MT, Lanzón M, Puertas F (2017) Alkali-activated mortars: workability and rheological behaviour. Constr Build Mater 145:576–587

    Article  Google Scholar 

  22. Fernández-Jiménez A, Puertas F (1997) Alkali-activated slag cements: kinetic studies. Cem Concr Res 27(3):359–368

    Article  Google Scholar 

  23. Trtnik G, Turk G, Kavčič F, Bosiljkov VB (2008) Possibilities of using the ultrasonic wave transmission method to estimate initial setting time of cement paste. Cem Concr Res 38(11):1336–1342

    Article  Google Scholar 

  24. Silverstein RM, Webster FX, Kiemle DJ (2005) Spectrometric identification of organic compounds, 7th edn. Wiley, Hoboken

    Google Scholar 

  25. Yu P, Kirkpatrick RJ, Poe B, McMillan PF, Cong X (1999) Structure of calcium silicate hydrate (C–S–H): near-, mid-, and far-infrared spectroscopy. J Am Ceram Soc 82(3):742–748

    Article  Google Scholar 

  26. Fernandez-Jimenez A, Puertas F (2003) Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements. Adv Cem Res 15(3):129–136

    Article  Google Scholar 

  27. Mohassab Y, Sohn HY (2015) Analysis of slag chemistry by FTIR-RAS and Raman spectroscopy: effect of water vapor content in H2–H2O–CO–CO2 mixtures relevant to a novel green ironmaking technology. Steel Res Int 86(7):740–752

    Article  Google Scholar 

  28. Garbev K, Beuchle G, Schweike U, Merz D, Dregert O, Stemmermann P (2014) Preparation of a novel cementitious material from hydrothermally synthesized C–S–H phases. J Am Ceram Soc 97(7):2298–2307

    Article  Google Scholar 

  29. Pang LSK, Vassallo AM, Phong-anant D, Wilson MA (1993) A study of slag in laboratory, pilot and commercial scale furnaces using FTIR microscopy, electron microscopy and NMR spectroscopy. Fuel Process Technol 33(1):13–32

    Article  Google Scholar 

  30. Myers RJ, Bernal SA, San Nicolas R, Provis JL (2013) Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model. Langmuir 29(17):5294–5306

    Article  Google Scholar 

  31. Le Saoût G, Ben Haha M, Winnefeld F, Lothenbach B, Jantzen C (2011) Hydration degree of alkali-activated slags. A 29Si NMR study. J Am Ceram Soc 94(12):4541–4547

    Article  Google Scholar 

  32. Zhang L, Glasser FP (2000) Critical examination of drying damage to cement pastes. Adv Cem Res 12(2):79–88

    Article  Google Scholar 

  33. Gruskovnjak A, Lothenbach B, Holzer L, Figi R, Winnefeld F (2006) Hydration of alkali-activated slag: comparison with ordinary Portland cement. Adv Cem Res 18(3):119–128

    Article  Google Scholar 

  34. Gruskovnjak A, Lothenbach B, Winnefeld F, Münch B, Figi R, Ko S-C et al (2011) Quantification of hydration phases in supersulfated cements: review and new approaches. Adv Cem Res 23(6):265–275

    Article  Google Scholar 

  35. Mu J, Perlmutter DD (1981) Thermal decomposition of carbonates, carboxylates, oxalates, acetates, formates, and hydroxides. Thermochim Acta 49(2–3):207–218

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Ehrenberg (FEhS) and Dr. Krakehl (Woellner GmbH) for the supply of slag and alkali silicate solutions. Furthermore, the work of the laboratory staff of TU Berlin is greatly acknowledged.

Funding

This study was funded by Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF, Grant Number: 18856 BG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Jin.

Ethics declarations

Conflict of interest

We declare that there is no conflict of interest in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, Y., Stephan, D. & Lu, Z. The effects of calcium formate on the early hydration of alkali silicate activated slag. Mater Struct 52, 37 (2019). https://doi.org/10.1617/s11527-019-1336-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-019-1336-y

Keywords

Navigation