Influence of the morphology of the cracking zone on the fracture energy of HMA materials


Cracking is a common failure mechanism in Hot Mix Asphalt (HMA) materials. Therefore, the study and characterization of fracture processes in these mixtures is crucial to achieve more durable pavement designs. Existing fracture testing procedures typically compute the fracture energy of HMA as the ratio between the work required to generate the propagation of a crack within a specimen and the planar cross-sectional area of the fractured surface. However, the morphology of the fractured surface directly depends on the three-dimensional crack path and on the characteristics of the microstructure of the material, questioning both the accuracy of the assumed simplified two-dimensional rectangular area and the final magnitude of the fracture energy. This study presents a comprehensive experimental effort to determine the impact of the actual morphology of the crack area in the fracture behaviour of HMA. To accomplish this objective, semi-circular bending (SCB) tests were performed on 66 specimens of mixtures having three different gradations. Fracture energy values were obtained after accounting for the actual morphology of the crack zone using a scanning technology based on structured blue light. The results demonstrate that the gradation of the mixtures impact the morphology of the fracture surface of the testing specimens and, consequently, the final estimation of the fracture energy of these materials.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Krishnan JM, Rajagopal KR (2003) Review of the uses and modeling of bitumen from ancient to modern times. Appl Mech Rev 56(2):149–214

    Article  Google Scholar 

  2. 2.

    Im S, Ban H, Kim YR (2014) Characterization of mode-I and mode-II fracture properties of fine aggregate matrix using a semicircular specimen geometry. Constr Build Mater 52:413–421

    Article  Google Scholar 

  3. 3.

    Dave EV, Behnia B, Ahmed S, Buttlar WG, Reis H (2011) Low temperature fracture evaluation of asphalt mixtures using mechanical testing and acoustic emissions techniques. J Assoc Asph Paving Technol 80:193–220

    Google Scholar 

  4. 4.

    Braham A, Buttlar W, Marasteanu M (2007) Effect of binder type, aggregate, and mixture composition on fracture energy of hot-mix asphalt in cold climates. Trans Res Rec J Trans Res Board 2001:102–109

    Article  Google Scholar 

  5. 5.

    Ahmed S, Dave EV, Behnia B, Buttlar WG, Exline M (2010) Fracture characterization of gap-graded asphalt mixtures and thin bonded wearing courses. Int J Pavement Res Technol 3(3):128–134

    Google Scholar 

  6. 6.

    Kim YR, Aragão FTS (2013) Microstructure modeling of rate-dependent fracture behavior in bituminous paving mixtures. Finite Elem Anal Des 63:23–32

    MathSciNet  Article  Google Scholar 

  7. 7.

    Wagoner M, Buttlar W, Paulino G, Blankenship P (2005) Investigation of the fracture resistance of hot-mix asphalt concrete using a disk-shaped compact tension test. Trans Res Rec J Trans Res Board 1929:183–192

    Article  Google Scholar 

  8. 8.

    Wagoner MP, Buttlar WG, Paulino GH (2005) Development of a single-edge notched beam test for asphalt concrete mixtures. J Test Eval 33(6):452–460

    Google Scholar 

  9. 9.

    Elseifi MA, Mohammad LN, Ying H, Cooper IIIS (2012) Modeling and evaluation of the cracking resistance of asphalt mixtures using the semi-circular bending test at intermediate temperatures. Road Mater Pavement Des 13(sup1):124–139

    Article  Google Scholar 

  10. 10.

    Pérez-Jiménez F, Valdés G, Miró R, Martínez A, Botella R (2010) Fénix test: development of a new test procedure for evaluating cracking resistance in bituminous mixtures. Trans Res Rec J Trans Res Board 2181:36–43

    Article  Google Scholar 

  11. 11.

    Molenaar AAA, Scarpas A, Liu X, Erkens SMJG (2002) Semi-circular bending test; simple but useful? J Assoc Asph Paving Technol 71:794–815

    Google Scholar 

  12. 12.

    Marasteanu M, Dai S, Labuz J, Li X (2002) Determining the low-temperature fracture toughness of asphalt mixtures. Trans Res Rec J Trans Res Board 1789:191–199

    Article  Google Scholar 

  13. 13.

    AASHTO, TP. 105-13 (2013) Standard method of test for determining the fracture energy of asphalt mixtures using the Semicircular Bend geometry (SCB). American Association of State and Highway Transportation Officials (AASHTO), Washington, DC

  14. 14.

    AASHTO, TP. 124-16 (2016) Standard method of test for determining the fracture potential of asphalt mixtures using the Semicircular Bend geometry (SCB) at intermediate temperature. American Association of State and Highway Transportation Officials (AASHTO), Washington, DC

  15. 15.

    Li XJ, Marasteanu MO (2010) Using semicircular bending test to evaluate low temperature fracture resistance for asphalt concrete. Exp Mech 50(7):867–876

    Article  Google Scholar 

  16. 16.

    Im S, Kim YR, Ban H (2013) Rate-and temperature-dependent fracture characteristics of asphaltic paving mixtures. J Tes Eval 41(2):257–268

    Google Scholar 

  17. 17.

    Yang S, Braham AF (2017) Influence of binder grade, gradation, temperature and loading rate on R-curve of asphalt concrete. Constr Build Mater 154:780–790

    Article  Google Scholar 

  18. 18.

    Aragão FTS, Badilla-Vargas GA, Hartmann DA, de Oliveira AD, Kim YR (2017) Characterization of temperature-and rate-dependent fracture properties of fine aggregate bituminous mixtures using an integrated numerical-experimental approach. Eng Frac Mech 180:195–212

    Article  Google Scholar 

  19. 19.

    Ban H, Im S, Kim YR (2015) Mixed-mode fracture characterization of fine aggregate mixtures using semicircular bend fracture test and extended finite element modeling. Constr Build Mater 101:721–729

    Article  Google Scholar 

  20. 20.

    Ozer H, Al-Qadi I, Carpenter S, Aurangzeb Q, Roberts G, Trepanier J (2009) Evaluation of RAP Impact on Hot-Mix-Asphalt Design and Performance. Proc Assoc Asph Paving Technol 28:317–348

    Google Scholar 

  21. 21.

    Huang B, Shu X, Vukosavljevic D (2010) Laboratory investigation of cracking resistance of hot-mix asphalt field mixtures containing screened reclaimed asphalt pavement. ASCE J Mater Civil Eng 23(11):1535–1543

    Article  Google Scholar 

  22. 22.

    Mubaraki MA, Abd-Elhady AA, Osman SA, Sallam HEM (2017) Mixed mode fracture behaviour of concrete pavement containing RAP-3D finite element analysis. Proc Struct Integr 5:19–26

    Article  Google Scholar 

  23. 23.

    Ozer H, Al-Qadi IL, Singhvi P, Khan T, Rivera-Perez J, El-Khatib A (2016) Fracture characterization of asphalt mixtures with high recycled content using Illinois semi-circular bending test method and flexibility index. Trans Res Rec J Trans Res Board 2575:130–137

    Article  Google Scholar 

  24. 24.

    Ayatollahi MR, Aliha MRM (2006) On determination of mode II fracture toughness using semi-circular bend specimen. Int J Solids Struct 43(17):5217–5227

    Article  Google Scholar 

  25. 25.

    Ozer H, Al-Qadi IL, Lambros J, El-Khatib A, Singhvi P, Doll B (2016) Development of the fracture-based flexibility index for asphalt concrete cracking potential using modified semi-circle bending test parameters. Constr Build Mater 115:390–401

    Article  Google Scholar 

  26. 26.

    Hull D (1999) Fractography: observing, measuring and interpreting fracture surface topography. Cambridge University Press, Cambridge

    Google Scholar 

  27. 27.

    Anderson TL (2017) Fracture mechanics: fundamentals and applications. CRC Press, Boca Raton

    Google Scholar 

  28. 28.

    Lynch SP, Moutsos S (2006) A brief history of fractography. J Fail Anal Prev 6(6):54–69

    Article  Google Scholar 

  29. 29.

    Roulin-Moloney AC (1986) Fractography and failure mechanisms of polymers and composites. Elsevier Applied Science, London

    Google Scholar 

  30. 30.

    Stewart CM, Reyes JG, Garcia VM (2017) Comparison of fracture test standards for a Superpave dense-graded hot mix asphalt. Eng Fract Mech 169:262–275

    Article  Google Scholar 

  31. 31.

    INVIAS (2012) Normas y Especificaciones de materiales para carretera Capítulo 4: 450.1–450.5. INVIAS: Bogotá

  32. 32.

    Roberts FL, Kandhal PS, Brown ER, Lee DY, Kennedy TW (1991) Hot mix asphalt materials, mixture design, and construction, 2nd edn. Lanham NAPA Education Foundation, Maryland

    Google Scholar 

  33. 33.

    ASTM D7313–07 (2007) Standard method for determining fracture energy of asphalt aggregate mixtures using the disk-shaped compact tension geometry. ASTM International, West Conshohocken

    Google Scholar 

  34. 34.

    Chong K, Kuruppu MD (1984) New specimen for fracture toughness determination for rock and other materials. Int J Fract 26(2):59–62

    Article  Google Scholar 

  35. 35.

    Saha G, Biligiri K (2015) Fracture damage evaluation of asphalt mixtures using semi-circular bending test based on fracture energy approach. Eng Fract Mech 142:154–169

    Article  Google Scholar 

  36. 36.

    Nsengiyumva G, You T, Kim YR (2017) Experimental-statistical investigation of testing variables of a semicircular bending (SCB) fracture test repeatability for bituminous mixtures. J Test Eval 45(5):1691–1701

    Article  Google Scholar 

  37. 37.

    Lackner R, Blab R, Jäger A, Spiegl M, Kappl K, Wistuba M (2004) Multiscale modeling as the basis for reliable predictions of the behaviour of multi-composed materials. Prog Eng Comput Technol 8:153–187

    Article  Google Scholar 

  38. 38.

    Pichler C, Lackner R, Aigner E (2012) Generalized self-consistent scheme for upscaling of viscoelastic properties of highly-filled matrix-inclusion composites—application in the context of multiscale modeling of bituminous mixtures. Composit Part B Eng 43(2):457–464

    Article  Google Scholar 

  39. 39.

    Kim YR, Lutif J, Allen D (2009) Determining representative volume elements of asphalt concrete mixtures without damage. Trans Res Rec J Trans Res Board 2127:52–59

    Article  Google Scholar 

Download references


This publication was partially made possible by the call for proposals ‘Research Program 2012’ from the Office of the Vice-President for Research at Universidad de los Andes (Bogota, Colombia). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the University.

Author information



Corresponding author

Correspondence to Silvia Caro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Espinosa, L., Wills, J., Caro, S. et al. Influence of the morphology of the cracking zone on the fracture energy of HMA materials. Mater Struct 52, 35 (2019).

Download citation


  • HMA
  • Fracture energy
  • SCB test
  • Cracking zone