Skip to main content
Log in

Prediction of concrete casting in steel-plate concrete panels

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Sound casting is necessary for obtaining high-quality concrete structures. A quantitative evaluation for the sound casting can be achieved by describing the passing and filling ability of concrete. This study proposes a generalized model to predict the filling ability of concrete in steel-plate concrete panels. The panels include periodic arrayed studs; their density is much higher than that of general reinforcements in concrete structures. The permeability describing the concrete flow resistance by the periodic arrayed studs is numerically evaluated considering their geometrical distribution. Two algorithms based on the porous-medium analogy are then proposed to simulate the filling of concrete.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ozaki M, Akita S, Osuga H et al (2004) Study on steel plate reinforced concrete panels subjected to cyclic in-plane shear. Nuclear Eng Des 228:225–244

    Article  Google Scholar 

  2. Yan JB, Wang JY, Liew JYR et al (2016) Ultimate strength behaviour of steel-concrete-steel sandwich plate under concentrated loads. Ocean Eng 118:41–57. https://doi.org/10.1016/j.oceaneng.2016.03.062

    Article  Google Scholar 

  3. Takeuchi M, Narikawa M, Matsuo I et al (1998) Study on a concrete filled structure for nuclear power plants. Nucl Eng Des 179:209–223. https://doi.org/10.1016/s0029-5493(97)00282-3

    Article  Google Scholar 

  4. Weitzenböck J, Grafton T (2010) Assessment of the INCA Steel-concrete-steel sandwich technology—a public report. DNV, Det Norske Veritas.

  5. Lloyd’s Register (2006) Provisional rules for the application of sandwich panel construction to ship structure. Lloyd’s Register of shipping, London.

  6. Roussel N, Geiker MR, Dufour F et al (2007) Computational modeling of concrete flow: general overview. Cem Concr Res 37:1298–1307. https://doi.org/10.1016/j.cemconres.2007.06.007

    Article  Google Scholar 

  7. Kolařík F, Patzák B, Zeman J (2015) Fresh Concrete flow through reinforcing bars using homogenization approach. In: 21st international conference engineering mechanics, pp 140–141

  8. Vasilic K, Meng B, Kühne HC, Roussel N (2011) Flow of fresh concrete through steel bars: a porous medium analogy. Cem Concr Res 41:496–503. https://doi.org/10.1016/j.cemconres.2011.01.013

    Article  Google Scholar 

  9. Vasilic K, Schmidt W, Kühne HC et al (2016) Flow of fresh concrete through reinforced elements: experimental validation of the porous analogy numerical method. Cem Concr Res 88:1–6. https://doi.org/10.1016/j.cemconres.2016.06.003

    Article  Google Scholar 

  10. Boutin C (2000) Study of permeability by periodic and self-consistent homogenisation. Eur J Mech A/Solids 19:603–632. https://doi.org/10.1016/S0997-7538(00)00174-1

    Article  MathSciNet  MATH  Google Scholar 

  11. Carman P (1937) Fluid flow through granular beds. Trans Inst Chem Eng 15:150–166

    Google Scholar 

  12. Hirt C, Nichols B (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225. https://doi.org/10.1016/0021-9991(81)90145-5

    Article  MATH  Google Scholar 

  13. Gram A, Silfwerbrand J, Lagerblad B (2014) Obtaining rheological parameters from flow test—analytical, computational and lab test approach. Cem Concr Res 63:29–34. https://doi.org/10.1016/j.cemconres.2014.03.012

    Article  Google Scholar 

  14. ASTM C1611/C1611M-14 (2014) Standard test method for slump flow of self-consolidating concrete. ASTM International 6. https://doi.org/10.1520/c1611

  15. Shin TY, Kim JH, Han SH (2017) Rheological properties considering the effect of aggregates on concrete slump flow. Mater Struct 50:239. https://doi.org/10.1617/s11527-017-1104-9

    Article  Google Scholar 

  16. Saak AW, Jennings HM, Shah SP (2004) A generalized approach for the determination of yield stress by slump and slump flow. Cem Concr Res 34:363–371. https://doi.org/10.1016/j.cemconres.2003.08.005

    Article  Google Scholar 

  17. Neophytou MKA, Pourgouri S, Kanellopoulos AD et al (2010) Determination of the rheological parameters of self-compacting concrete matrix using slump flow test. Appl Rheol 20:62402. https://doi.org/10.3933/ApplRheol-20-62402

    Article  Google Scholar 

  18. Thrane L, Pade C, Svensson T (2007) Estimation of Bingham rheological parameters of SCC from slump flow measurement. In: 5th international RILEM symposium on self-compacting concrete, pp 353–358

  19. Roussel N, Coussot P (2005) “Fifty-cent rheometer” for yield stress measurements: from slump to spreading flow. J Rheol 49:705–718. https://doi.org/10.1122/1.1879041

    Article  Google Scholar 

  20. Wallevik JE (2006) Relationship between the Bingham parameters and slump. Cem Concr Res 36:1214–1221. https://doi.org/10.1016/j.cemconres.2006.03.001

    Article  Google Scholar 

  21. Zerbino R, Barragán B, Garcia T et al (2009) Workability tests and rheological parameters in self-compacting concrete. Mater Struct/Materiaux et Const 42:947–960. https://doi.org/10.1617/s11527-008-9434-2

    Article  Google Scholar 

  22. Andraž H, Franci K, Violeta B-B (2013) Rheological parameters of fresh concrete—comparison of rheometers. Gradevinar 65:99–109

    Google Scholar 

  23. ACI Committee 237 (2007) ACI 237R-07, self-consolidating concrete. ACI 237R-07

  24. Kim JH, Jang HR, Yim HJ (2015) Sensitivity and accuracy for rheological simulation of cement-based materials. Comput Concr 15:903–919. https://doi.org/10.12989/cac.2015.15.6.903

    Article  Google Scholar 

  25. ASTM C94/C94M-15 (2015) Standard specification for ready-mixed concrete. ASTM International. https://doi.org/10.1520/c0094

Download references

Acknowledgements

This study was funded by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant Number: NRF-2018R1D1A1B07047321).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Hong Kim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, T.Y., Kim, J.H. Prediction of concrete casting in steel-plate concrete panels. Mater Struct 52, 15 (2019). https://doi.org/10.1617/s11527-019-1323-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-019-1323-3

Keywords

Navigation