Skip to main content
Log in

Influence of the rheological properties on the steel fibre distribution and orientation in self-compacting concrete

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The interest in potential applications produced with self-compacting fibre reinforced concrete continues to grow, but in practice, problems associated with an uneven distribution and orientation of fibres in the concrete structure occur. It is not clear what exactly influences uneven distribution of fibres in self-compacting concrete (SCC) mixtures, especially during the casting and how different factors influence fibre orientation. The objective of this work was to investigate how rheological properties influence the steel fibre distribution in self-compacting concrete. This work also focuses on the investigation of steel fibre spatial orientation dependence on rheological properties of SCC, while keeping other casting parameters and the proportions of mixture components constant. Mixtures with three different rheological properties were chosen based on slump flow, slump flow time t500 and static segregation values. The steel fibre orientation, volumetric concentration and spatial distribution values were determined in separate beam sections using three different non-destructive testing methods: electromagnetic induction, image analysis and computed tomography (CT scan). The comparison of the results is presented. The results show how different rheological properties of SCC affect the steel fibre orientation and distribution for the case of beams produced with the flow-induced casting method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. di Prisco M, Plizzari G, Vandewalle L (2009) Fibre reinforced concrete: new design perspectives. Mater Struct 42:1261–1281. https://doi.org/10.1617/s11527-009-9529-4

    Article  Google Scholar 

  2. Germano F, Tiberti G, Plizzari G (2016) Post-peak fatigue performance of steel fiber reinforced concrete under flexure. Mater Struct 49:4229–4245. https://doi.org/10.1617/s11527-015-0783-3

    Article  Google Scholar 

  3. Boulekbache B, Hamrat M, Chemrouk M, Amziane S (2014) Failure mechanism of fibre reinforced concrete under splitting test using digital image correlation. Mater Struct. https://doi.org/10.1617/s11527-014-0348-x

    Article  Google Scholar 

  4. Wille K, Naaman AE, El-Tawil S, Parra-Montesinos GJ (2012) Ultra-high performance concrete and fiber reinforced concrete: achieving strength and ductility without heat curing. Mater Struct 45:309–324. https://doi.org/10.1617/s11527-011-9767-0

    Article  Google Scholar 

  5. Boulekbache B, Hamrat M, Chemrouk M, Amziane S (2010) Flowability of fibre-reinforced concrete and its effect on the mechanical properties of the material. Constr Build Mater 24:1664–1671. https://doi.org/10.1016/j.conbuildmat.2010.02.025

    Article  Google Scholar 

  6. Laranjeira F, Aguado A, Molins C et al (2012) Framework to predict the orientation of fibers in FRC: a novel philosophy. Cem Concr Res 42:752–768. https://doi.org/10.1016/j.cemconres.2012.02.013

    Article  Google Scholar 

  7. Švec O, Žirgulis G, Bolander JE, Stang H (2014) Influence of formwork surface on the orientation of steel fibres within self-compacting concrete and on the mechanical properties of cast structural elements. Cem Concr Compos 50:60–72. https://doi.org/10.1016/j.cemconcomp.2013.12.002

    Article  Google Scholar 

  8. Dupont D, Vandewalle L (2005) Distribution of steel fibres in rectangular sections. Cem Concr Compos 27:391–398. https://doi.org/10.1016/j.cemconcomp.2004.03.005

    Article  Google Scholar 

  9. Martinie L, Roussel N (2011) Simple tools for fiber orientation prediction in industrial practice. Cem Concr Res 41:993–1000. https://doi.org/10.1016/j.cemconres.2011.05.008

    Article  Google Scholar 

  10. Sarmiento EV, Zirgulis G, Sandbakk S, Geiker MR (2012) Influence of concrete flow on fibre distribution, orientation and mechanical properties of fibre reinforced concrete. In: Barros J (ed) BEFIB2012—8th RILEM international symposium of fibre reinforced concrete, Guimaraes, Portugal, pp 1–12

  11. Lee C, Kim H (2010) Orientation factor and number of fibers at failure plane in ring-type steel fiber reinforced concrete. Cem Concr Res 40:810–819. https://doi.org/10.1016/j.cemconres.2009.11.009

    Article  Google Scholar 

  12. Žirgulis G, Švec O, Geiker MR et al (2016) Influence of reinforcing bar layout on fibre orientation and distribution in slabs cast from fibre-reinforced self-compacting concrete (FRSCC). Struct Concr 17:245–256. https://doi.org/10.1002/suco.201500064

    Article  Google Scholar 

  13. Yoo DY, Zi G, Kang ST, Yoon YS (2015) Biaxial flexural behavior of ultra-high-performance fiber-reinforced concrete with different fiber lengths and placement methods. Cem Concr Compos 63:51–66. https://doi.org/10.1016/j.cemconcomp.2015.07.011

    Article  Google Scholar 

  14. Yoo DY, Kang ST, Yoon YS (2014) Effect of fiber length and placement method on flexural behavior, tension-softening curve, and fiber distribution characteristics of UHPFRC. Constr Build Mater 64:67–81. https://doi.org/10.1016/j.conbuildmat.2014.04.007

    Article  Google Scholar 

  15. Ferrara L, Ozyurt N, di Prisco M (2011) High mechanical performance of fibre reinforced cementitious composites: the role of “casting-flow induced” fibre orientation. Mater Struct 44:109–128. https://doi.org/10.1617/s11527-010-9613-9

    Article  Google Scholar 

  16. Torrijos MC, Barragán BE, Zerbino RL (2010) Placing conditions, mesostructural characteristics and post-cracking response of fibre reinforced self-compacting concretes. Constr Build Mater 24:1078–1085. https://doi.org/10.1016/j.conbuildmat.2009.11.008

    Article  Google Scholar 

  17. Deeb R, Karihaloo BL, Kulasegaram S (2014) Reorientation of short steel fibres during the flow of self-compacting concrete mix and determination of the fibre orientation factor. Cem Concr Res 56:112–120. https://doi.org/10.1016/j.cemconres.2013.10.002

    Article  Google Scholar 

  18. Spangenberg J, Roussel N, Hattel JH et al (2012) Patterns of gravity induced aggregate migration during casting of fluid concretes. Cem Concr Res 42:1571–1578. https://doi.org/10.1016/j.cemconres.2012.08.007

    Article  Google Scholar 

  19. Spangenberg J, Roussel N, Hattel JH et al (2012) Flow induced particle migration in fresh concrete: theoretical frame, numerical simulations and experimental results on model fluids. Cem Concr Res 42:633–641. https://doi.org/10.1016/j.cemconres.2012.01.007

    Article  Google Scholar 

  20. Ponikiewski T, Katzer J, Bugdol M, Rudzki M (2015) X-ray computed tomography harnessed to determine 3D spacing of steel fibres in self compacting concrete (SCC) slabs. Constr Build Mater 74:102–108. https://doi.org/10.1016/j.conbuildmat.2014.10.024

    Article  Google Scholar 

  21. Ozyurt N, Mason TO, Shah SP (2007) Correlation of fiber dispersion, rheology and mechanical performance of FRCs. Cem Concr Compos 29:70–79. https://doi.org/10.1016/j.cemconcomp.2006.08.006

    Article  Google Scholar 

  22. Zerbino R, Tobes JM, Bossio ME, Giaccio G (2012) On the orientation of fibres in structural members fabricated with self compacting fibre reinforced concrete. Cem Concr Compos 34:191–200. https://doi.org/10.1016/j.cemconcomp.2011.09.005

    Article  Google Scholar 

  23. Minelli F, Conforti A, Cuenca E, Plizzari G (2014) Are steel fibres able to mitigate or eliminate size effect in shear? Mater Struct 47:459–473. https://doi.org/10.1617/s11527-013-0072-y

    Article  Google Scholar 

  24. Kang S-TT, Kim J-KK (2011) The relation between fiber orientation and tensile behavior in an ultra high performance fiber reinforced cementitious composites (UHPFRCC). Cem Concr Res 41:1001–1014. https://doi.org/10.1016/j.cemconres.2011.05.009

    Article  Google Scholar 

  25. Soulioti DV, Barkoula NM, Paipetis A, Matikas TE (2011) Effects of fibre geometry and volume fraction on the flexural behaviour of steel-fibre reinforced concrete. Strain 47:e535–e541. https://doi.org/10.1111/j.1475-1305.2009.00652.x

    Article  Google Scholar 

  26. Rizzuti L, Bencardino F (2014) Effects of fibre volume fraction on the compressive and flexural experimental behaviour of SFRC. Contemp Eng Sci 7:379–390. https://doi.org/10.12988/ces.2014.4218

    Article  Google Scholar 

  27. Li M, Li VC (2013) Rheology, fiber dispersion, and robust properties of engineered cementitious composites. Mater Struct 46:405–420. https://doi.org/10.1617/s11527-012-9909-z

    Article  Google Scholar 

  28. Emdadi A, Mehdipour I, Libre NA, Shekarchi M (2015) Optimized workability and mechanical properties of FRCM by using fiber factor approach: theoretical and experimental study. Mater Struct 48:1149–1161. https://doi.org/10.1617/s11527-013-0221-3

    Article  Google Scholar 

  29. Ferrara L, Meda A (2007) Relationships between fibre distribution, workability and the mechanical properties of SFRC applied to precast roof elements. Mater Struct 39:411–420. https://doi.org/10.1617/s11527-005-9017-4

    Article  Google Scholar 

  30. di Prisco M, Ferrara L, Lamperti MGL (2013) Double edge wedge splitting (DEWS): an indirect tension test to identify post-cracking behaviour of fibre reinforced cementitious composites. Mater Struct 46:1893–1918. https://doi.org/10.1617/s11527-013-0028-2

    Article  Google Scholar 

  31. Bastien-Masse M, Denarié E, Brühwiler E (2016) Effect of fiber orientation on the in-plane tensile response of UHPFRC reinforcement layers. Cem Concr Compos 67:111–125. https://doi.org/10.1016/j.cemconcomp.2016.01.001

    Article  Google Scholar 

  32. Sarmiento E, Hendriks M, Kanstad T (2014) Accounting for the fibre orientation on the structural performance of flowable fibre reinforced concrete. In: Computational modelling of concrete structures, CRC Press, pp 609–618

  33. Woo LY, Wansom S, Ozyurt N et al (2005) Characterizing fiber dispersion in cement composites using AC-impedance spectroscopy. Cem Concr Compos 27:627–636. https://doi.org/10.1016/j.cemconcomp.2004.06.003

    Article  Google Scholar 

  34. Choi SW, Lee JH (2006) Application of ultrasonic phased array techniques for inspection of stud bolts in nuclear power plants. Solid State Phenom 110:97–104. https://doi.org/10.4028/www.scientific.net/SSP.110.97

    Article  Google Scholar 

  35. Maierhofer C, Arndt R, Röllig M et al (2006) Application of impulse-thermography for non-destructive assessment of concrete structures. Cem Concr Compos 28:393–401. https://doi.org/10.1016/j.cemconcomp.2006.02.011

    Article  Google Scholar 

  36. Ferrara L, Faifer M, Toscani S (2012) A magnetic method for non destructive monitoring of fiber dispersion and orientation in steel fiber reinforced cementitious composites—part 1: method calibration. Mater Struct 45:575–589. https://doi.org/10.1617/s11527-011-9793-y

    Article  Google Scholar 

  37. Wan K, Xu Q, Wang Y, Pan G (2014) 3D spatial distribution of the calcium carbonate caused by carbonation of cement paste. Cem Concr Compos 45:255–263. https://doi.org/10.1016/j.cemconcomp.2013.10.011

    Article  Google Scholar 

  38. Chung S-YY, Han T-SS, Kim S-YY et al (2016) Evaluation of effect of glass beads on thermal conductivity of insulating concrete using micro CT images and probability functions. Cem Concr Compos 65:150–162. https://doi.org/10.1016/j.cemconcomp.2015.10.011

    Article  Google Scholar 

  39. Ponikiewski T, Katzer J, Bugdol M, Rudzki M (2015) Steel fibre spacing in self-compacting concrete precast walls by X-ray computed tomography. Mater Struct 48:3863–3874. https://doi.org/10.1617/s11527-014-0444-y

    Article  Google Scholar 

  40. Bordelon AC, Roesler JR (2014) Spatial distribution of synthetic fibers in concrete with X-ray computed tomography. Cem Concr Compos 53:35–43. https://doi.org/10.1016/j.cemconcomp.2014.04.007

    Article  Google Scholar 

  41. Ponikiewski T, Katzer J (2016) X-ray computed tomography of fibre reinforced self-compacting concrete as a tool of assessing its flexural behaviour. Mater Struct 49:2131–2140. https://doi.org/10.1617/s11527-015-0638-y

    Article  Google Scholar 

  42. Žirgulis G, Švec O, Sarmiento EV et al (2015) Importance of quantification of steel fibre orientation for residual flexural tensile strength in FRC. Mater Struct 49:3861–3877. https://doi.org/10.1617/s11527-015-0759-3

    Article  Google Scholar 

  43. Grigaliunas P, Rudzionis Z (2014) Investigation and comparison of SCFRC properties incorporating fly ash and zeolitic additives. J Sustain Archit Civ Eng 9:35–49. https://doi.org/10.5755/j01.sace.9.4.7482

    Article  Google Scholar 

  44. EN 12350-9 (2010) Testing fresh concrete - Part 9: self-compacting concrete - V-funnel test. European Committee for Standardization

  45. ASTM (2015) Standard test method for static segregation of self-consolidating concrete using. ASTM i:12–15. https://doi.org/10.1520/c1610

  46. Wang X, Wang K, Han J, Taylor P (2015) Image analysis applications on assessing static stability and flowability of self-consolidating concrete. Cem Concr Compos 62:156–167. https://doi.org/10.1016/j.cemconcomp.2015.05.002

    Article  Google Scholar 

  47. Justs J, Wyrzykowski M, Bajare D, Lura P (2015) Internal curing by superabsorbent polymers in ultra-high performance concrete. Cem Concr Res 76:82–90. https://doi.org/10.1016/j.cemconres.2015.05.005

    Article  Google Scholar 

  48. Ghourchian S, Wyrzykowski M, Baquerizo L, Lura P (2017) Susceptibility of Portland cement and blended cement concretes to plastic shrinkage cracking. Cem Concr Compos 85:44–55. https://doi.org/10.1016/j.cemconcomp.2017.10.002

    Article  Google Scholar 

  49. Avizo (2015) Avizo User’s Guide. Visualization Sciences Group, Bordeaux

    Google Scholar 

  50. Westenberger P, Blanc R (2016) Advanced fiber evaluation workflows. In: 6th conference on industrial computed tomography, p 2016

  51. Roseman AM (2003) Particle finding in electron micrographs using a fast local correlation algorithm. Ultramicroscopy 94:225–236. https://doi.org/10.1016/S0304-3991(02)00333-9

    Article  Google Scholar 

  52. Weber B, Greenan G, Prohaska S et al (2012) Automated tracing of microtubules in electron tomograms of plastic embedded samples of Caenorhabditis elegans embryos. J Struct Biol 178:129–138. https://doi.org/10.1016/j.jsb.2011.12.004

    Article  Google Scholar 

  53. Ghourchian S, Wyrzykowski M, Lura P et al (2013) An investigation on the use of zeolite aggregates for internal curing of concrete. Constr Build Mater 40:135–144. https://doi.org/10.1016/j.conbuildmat.2012.10.009

    Article  Google Scholar 

  54. Hooton R, Struble L, Szecsy R et al (1998) Rheology of cement paste and concrete. Cem Concr Aggreg 20:269. https://doi.org/10.1520/CCA10421J

    Article  Google Scholar 

  55. Reinhardt HW, Huss A (2015) Rheological evaluation of slump flow curves of self-consolidating concrete from instrumented spread table. Adv Civ Eng Mater 3:20130112. https://doi.org/10.1520/ACEM20130112

    Article  Google Scholar 

  56. Koehler EP, Fowler DW, Jeknavorian A et al (2010) Comparison of workability test methods for self-consolidating concrete. J ASTM Int 7:1–19. https://doi.org/10.1520/JAI101927

    Article  Google Scholar 

  57. Orbe A, Losada R, Rojí E et al (2014) The prediction of bending strengths in SFRSCC using computational fluid dynamics (CFD). Constr Build Mater 66:587–596. https://doi.org/10.1016/j.conbuildmat.2014.06.003

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the Kaunas University of Technology Under Grant Agreement Nr.MTEPI-P-15010, project BeReTyr “Determination of Dispersive Reinforcement and Structural Defects in New Generation Concretes Using X-ray Micro Tomography”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Jasiūnienė.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jasiūnienė, E., Cicėnas, V., Grigaliūnas, P. et al. Influence of the rheological properties on the steel fibre distribution and orientation in self-compacting concrete. Mater Struct 51, 103 (2018). https://doi.org/10.1617/s11527-018-1231-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-018-1231-y

Keywords

Navigation