Skip to main content
Log in

Resilient modulus of pavement unbound granular materials containing recycled glass aggregate

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

With the increased knowledge of sustainable pavement construction, recycled materials more and more are being used in roadwork applications, especially as base materials. Among various recycled materials, recycled glass aggregate is of the special attraction in the present study. The main goal of this investigation is evaluating the behavior of base course containing recycled glass using resilient modulus (Mr) from laboratory testing. In this regard, recycled glass (RG) is replaced the same range size of the local base course material (MG20) based on volumetric method. The studied RG aggregate was in the range size of 0–5 mm. The results revealed that as RG content increased, Mr values of blends decreased. Furthermore, the shear strength of blends followed the similar trend as it decreases by RG contents. Finally, based on the experimental observation a model was proposed to interpret the effects of RG on the resilient modulus values of blends. Conclusively, using RG up to 25% of MG20 may change the growing trend of environmental problems, in a green way, without significant effects on the mechanical behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mohapatra PK, Kumari B (2017) Behaviors of intermediate layer “BASE COURSE” used on the construction of highway. Int J Mod Trends Sci Technol 3(8):44–49

  2. Lekarp F, Isacsson U, Dawson A (2000) State of the art. II: Permanent strain response of unbound aggregates. J Transp Eng 126(1):76–83

    Article  Google Scholar 

  3. Christopher BR, Schwartz C, Boudreau R (2006) Geotechnical aspects of pavements. National Highway Institute Federal Highway. Administration U.S. Department of Transportation Washington, D.C

  4. Rahbar-Rastegar R (2017) Cracking in asphalt pavements: impact of component properties and aging on fatigue and thermal cracking. University of New Hampshire, Durham

    Google Scholar 

  5. Craciun O, Lo S-CR (2009) Matric suction measurement in stress path cyclic triaxial testing of unbound granular base materials. Geotech Test J 33(1):33–44

    Google Scholar 

  6. Bilodeau J-P, Doré G (2012) Water sensitivity of resilient modulus of compacted unbound granular materials used as pavement base. Int J Pavement Eng 13(5):459–471

    Article  Google Scholar 

  7. Heydinger A, Xie Q, Randolph B, Gupta J (1996) Analysis of resilient modulus of dense-and open-graded aggregates. Transp Res Rec J Transp Res Board 1547:1–6

    Article  Google Scholar 

  8. Bilodeau J-P, Plamondon CO, Doré G (2016) Estimation of resilient modulus of unbound granular materials used as pavement base: combined effect of grain-size distribution and aggregate source frictional properties. Mater Struct 49(10):4363–4373

    Article  Google Scholar 

  9. Tarmuzi N, Jaya R, Yaacob H, Hassan N, Aziz M (2015) Aggregate angularity effect on porous asphalt engineering properties and performance. J Teknol 73(4):99–104

    Google Scholar 

  10. Lekarp F, Isacsson U, Dawson A (2000) State of the art. I: resilient response of unbound aggregates. J Transp Eng 126(1):66–75

    Article  Google Scholar 

  11. Alexandria V (2013) The aggregates handbook. National Stone Association, Alexandria

    Google Scholar 

  12. Werkmeister S (2003) Permanent deformation behaviour of unbound granular materials in pavement constructions. University of TU Dresden, Germany

  13. Cerni G, Cardone F, Virgili A, Camilli S (2012) Characterisation of permanent deformation behaviour of unbound granular materials under repeated triaxial loading. Constr Build Mater 28(1):79–87

    Article  Google Scholar 

  14. Mishra D, Tutumluer E (2012) Aggregate physical properties affecting modulus and deformation characteristics of unsurfaced pavements. J Mater Civ Eng 24(9):1144–1152

    Article  Google Scholar 

  15. Center CW (1998) A tool kit for the use of post-consumer glass as a construction aggregate. Rep No GL-97-5, Washington

  16. Wartman J, Grubb DG, Strenk P (2004) Engineering properties of crushed glass-soil blends. In: Geotechnical engineering for transportation projects, pp 732–739

  17. Senadheera S, Nash P, Rana A (2005) Characterization of the behavior of granular road material containing glass cullet. In: 7th International Conference on the Bearing Capacity of Roads Railways and Airfields BCRA05 Texas, USA

  18. Ali MMY, Arulrajah A, Disfani MM, Piratheepan J (2011) Suitability of using recycled glass-crushed rock blends for pavement subbase applications. In: Geo-frontiers congress 2011-ASCE 2011

  19. Arulrajah A, Ali MMY, Disfani MM, Horpibulsuk S (2014) Recycled-glass blends in pavement base/subbase applications: laboratory and field evaluation. J Mater Civ Eng 26(7):04014025. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000966

    Article  Google Scholar 

  20. Fredlund DG (2005) Unsaturated soil mechanics in engineering practice. J Geotech Geoenviron Eng 13200(286):1090–2413. https://doi.org/10.1061/ASCE1090-02412006132:3286

    Article  Google Scholar 

  21. ASTM (2011) D2487 Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). ASTM International, West Conshohocken. www.ASTM.org

  22. ASTM (2012) D1557, 2012. standard test methods for laboratory compaction characteristics of soil using modified effort (56,000 ft-lbf/ft3 (2700 kN-m/m3)). ASTM International, West Conshohocken

  23. ASTM (2010) D854 Standard test methods for specific gravity of soil solids by water pycnometer. The American Society for Testing and Materials, West Conshohocken

    Google Scholar 

  24. Québec MdTd (2015) Détermination du coefficient d’écoulement des granulats fins (LC 21-075). Procédure du laboratoire des chaussées, Ministère des Transports du Québec, Québec

    Google Scholar 

  25. Aashto T (2003) Standard method of test for determining the resilient modulus of soils and aggregate materials. American Association of State Highway and Transportation Officials, Washington, p 99

    Google Scholar 

  26. CWC CWC (1998) A tool kit for the use of post-consumer glass as a construction aggregate

  27. Wolfe AJ (2011) Behavior of composite pavement foundation materials subjected to cyclic loading. Iowa State University, Ames

    Book  Google Scholar 

  28. Pezo RF (1993) A general method of reporting resilient modulus tests of soils—a pavement engineer’s point of view. In: 72nd annual meeting of the TRB

  29. Garg N, Thompson M (1997) Triaxial characterization of Minnesota Road Research project granular materials. Transp Res Rec J Transp Res Board 1577:27–36

    Article  Google Scholar 

  30. Bilodeau J (2009) Optimisation de la granulométrie des matériaux granulaires de fondation des chaussées [Dissertation Ph.D.]. Québec: Université Laval

  31. Bilodeau J-P, Dore G, Pierre P (2010) Optimisation de la granulométrie des matériaux granulaires de fondation des chaussées. Can J Civ Eng 37(10):1350–1362

    Article  Google Scholar 

  32. Gräbe PJ, Clayton CR (2009) Effects of principal stress rotation on permanent deformation in rail track foundations. J Geotech Geoenviron Eng 135(4):555–565

    Article  Google Scholar 

  33. Li W, Wilson DJ, Larkin TJ, Black PM (2017) Permanent strain behavior of marginal granular material. Transp Res Rec J Transp Res Board 2655:54–63

    Article  Google Scholar 

  34. Holtz RD, Kovacs WD (1981) An introduction to geotechnical engineering, vol Monograph

  35. Chesner WH, Collins RJ, MacKay MH (1998) User guidelines for waste and by-product materials in pavement construction. Report/Paper Numbers: FHWA-RD-97-148, Report No. 480017

  36. Wartman J, Grubb DG, Strenk P (2004) Engineering properties of crushed glass soil blends. In: Yegian MK, Kavazanjian E (eds) Geotechnical engineering for transportation projects, pp 732–739

  37. Wartman J, Grubb DG, Nasim ASM (2004) Select engineering characteristics of crushed glass. J Mater Civ Eng 16(6):526–539. https://doi.org/10.1061/(ASCE)0899-1561(2004)16:6(526)

    Article  Google Scholar 

  38. Disfani MM, Arulrajah A, Bo MW, Sivakugan N (2012) Environmental risks of using recycled crushed glass in road applications. J Clean Prod 20(1):170–179. https://doi.org/10.1016/j.jclepro.2011.07.020

    Article  Google Scholar 

  39. Ali M, Arulrajah A (2012) Potential use of recycled crushed concrete-recycled crushed glass blends in pavement subbase applications. In: Geo Congress 2012, pp 3662–3671

  40. Ooi PSK, Li MMW, Sagario MLQ, Song Y (2008) Shear strength characteristics of recycled glass. Transp Res Rec 2059:52–62. https://doi.org/10.3141/2059-06

    Article  Google Scholar 

  41. Grubb DG, Davis AF, Sands SC, Carnivale M, Wartman J, Gallagher PM (2006) Field evaluation of crushed glass–dredged material blends. J Geotech Geoenviron Eng 132(5):577–590. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(577)

    Article  Google Scholar 

  42. Disfani MM, Arulrajah A, Bo MW, Hankour R (2011) Recycled crushed glass in road work applications. Waste Manag 31(11):2341–2351. https://doi.org/10.1016/j.wasman.2011.07.003

    Article  Google Scholar 

  43. du Québec MdT (2004) Détermination du module réversible et du coefficient de poisson réversible des matériaux granulaires al’aide d’une cellule triaxiale achargement déviatorique répété (LC-22-400). Procédure de laboratoire, Ministere des Transports du Québec, Québec

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahar Mohsenian Hadad Amlashi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

This study was funded by the Éco-Entreprises Québec, Mitacs Accélération, Recyc-Québec, Société des Alcools du Québec, and Ville de Montréal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohsenian Hadad Amlashi, S., Vaillancourt, M., Carter, A. et al. Resilient modulus of pavement unbound granular materials containing recycled glass aggregate. Mater Struct 51, 89 (2018). https://doi.org/10.1617/s11527-018-1219-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-018-1219-7

Keywords

Navigation