Skip to main content
Log in

Feasibility of using recycled concrete aggregates for half-warm mix asphalt

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The present study describes a laboratory investigation on the feasibility of reusing construction and demolition waste as recycled concrete aggregate (RCA) to manufacture half-warm mix asphalt (HWMA) instead of natural aggregates. In this investigation, semi-dense HWMA for the binder course, type AC 22 bin S, was analysed. Percentages of 0 (control mixture), 55, and 100% RCA were used instead of natural aggregates (hornfels). Cationic bitumen emulsion, type C60B4, was used to manufacture the aforementioned mixtures. First, the aggregates and bitumen emulsion mixing temperatures and mixing times were determined. Subsequently, volumetric properties, water resistance, resilient modulus, and resistance to permanent deformation were determined. All the samples were manufactured using Marshall compaction. The results indicate that it was possible to dose HWMA made with 55% RCA. The mixture exhibited increased bitumen consumption when compared to that of the control mixture (0% RCA) as well as increased air void content, increased stripping potential, less stiffness, and increased rutting potential. Nevertheless, the results satisfy the required conditions for low-traffic volume roads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aydin E (2016) Novel coal bottom ash waste composites for sustainable construction. Constr Build Mater 124:582–588. https://doi.org/10.1016/j.conbuildmat.2016.07.142

    Article  Google Scholar 

  2. European Asphalt Pavement Association (EAPA) (2005) Low temperature asphalt. Retrieved from http://www.eapa.org/usr_img/position_paper/low_temperature_asphalt2005.pdf. Accessed 1 June 2018

  3. Mallick RB, Bergendahl J (2009) A laboratory study on CO2 emission from asphalt binder and its reduction with the use of warm mix asphalt. Int J Sustain Eng 2(4):275–283. https://doi.org/10.1080/19397030903137287

    Article  Google Scholar 

  4. Rubio MC, Martínez G, Baena L, Moreno F (2012) Warm mix asphalt: an overview. J Clean Prod 24:76–84. https://doi.org/10.1016/j.jclepro.2011.11.053

    Article  Google Scholar 

  5. Ossa A, García JL, Botero E (2016) Use of recycled construction and demolition waste (CDW) aggregates: a sustainable alternative for the pavement construction industry. J Clean Prod 135:379–386. https://doi.org/10.1016/j.jclepro.2016.06.088

    Article  Google Scholar 

  6. Pasetto M, Baldo N (2004) The use of construction and demolition aggregate in bituminous concrete for road base layers. In: Proceedings of the 2004 global symposium on recycling, waste treatment and clean technology, REWAS, pp 193–202

  7. Diew WY, Delai SD, Dickson L (2007) Value-added utilisation of recycled concrete in hot-mix asphalt. Waste Manag 27(2):294–299. https://doi.org/10.1016/j.wasman.2006.02.001

    Article  Google Scholar 

  8. Pasandin AR, Perez I (2015) Overview of bituminous mixtures made with recycled concrete aggregates. Constr Build Mater 74:151–161. https://doi.org/10.1016/j.conbuildmat.2014.10.035

    Article  Google Scholar 

  9. Pérez I, Pasandín AR, Medina L (2012) Hot mix asphalt using C&D waste as coarse aggregates. Mater Des 36:840–846. https://doi.org/10.1016/j.matdes.2010.12.058

    Article  Google Scholar 

  10. Pérez I, Pasandín AR, Gallego J (2012) Stripping in hot mix asphalt produced by aggregates from construction and demolition waste. Waste Manag Res 30(1):3–11

    Article  Google Scholar 

  11. Lee CH, Du JC, Shen DH (2012) Evaluation of pre-coated recycled concrete aggregate for hot mix asphalt. Constr Build Mater 28:66–71. https://doi.org/10.1016/j.conbuildmat.2011.08.025

    Article  Google Scholar 

  12. Shen D, Du J (2004) Evaluation of building materials recycling on HMA permanent deformation. Constr Build Mater 18:391–397. https://doi.org/10.1016/j.conbuildmat.2004.03.007

    Article  Google Scholar 

  13. Bushal S, Li X, Wen H (2011) Evaluation of effects of recycled concrete aggregate on volumetrics of hot-mix asphalt. Transp Res Rec 2205(3):36–39. https://doi.org/10.3141/2205-05

    Article  Google Scholar 

  14. Pasandín AR, Pérez I (2013) Laboratory evaluation of hot-mix asphalt containing construction and demolition waste. Constr Build Mater 43:497–505. https://doi.org/10.1016/j.conbuildmat.2013.02.052

    Article  Google Scholar 

  15. Muniz de Farias M, Quiñones Sinisterra F, Gómez Jiménez AM, Ribeiro e Souza MV, Farias Falcão PR (2012) Influence of asphalt rubber on the crushing of recycled aggregates used in dense HMA. In: Proceedings of asphalt rubber. Munich

  16. Paranavithana S, Mohajerani A (2006) Effects of recycled concrete aggregates on properties of asphalt concrete. Resour Conserv Recycl 48:1–12. https://doi.org/10.1016/j.resconrec.2005.12.009

    Article  Google Scholar 

  17. Wen H, Bhusal S (2011) Evaluate recycled concrete as hot mix asphalt aggregate (No. TNW2011-14)

  18. Mills-Beale J, You Z (2010) The mechanical properties of asphalt mixtures with recycled concrete aggregates. Constr Build Mater 24:340–345. https://doi.org/10.1016/j.conbuildmat.2009.08.046

    Article  Google Scholar 

  19. Wu S, Zhong J, Zhu J, Wang D (2013) Influence of demolition waste used as recycled aggregate on performance of asphalt mixture. Road Mater Pavement 14(3):679–688. https://doi.org/10.1080/14680629.2013.779304

    Article  Google Scholar 

  20. Zhu J, Wu S, Zhong J, Wang D (2012) Investigation of asphalt mixture containing demolition waste obtained from earthquake-damaged buildings. Constr Build Mater 29:466–475. https://doi.org/10.1016/j.conbuildmat.2011.09.023

    Article  Google Scholar 

  21. Pasandín AR, Pérez I (2014) Mechanical properties of hot-mix asphalt made with recycled concrete aggregates coated with bitumen emulsion. Constr Build Mater 55:350–358. https://doi.org/10.1016/j.conbuildmat.2014.01.053

    Article  Google Scholar 

  22. Behnood A, Gharehveran MM, Asl FG, Ameri M (2015) Effects of copper slag and recycled concrete aggregate on the properties of CIR mixes with bitumen emulsion, rice husk ash, Portland cement and fly ash. Constr Build Mater 96:172–180. https://doi.org/10.1016/j.conbuildmat.2015.08.021

    Article  Google Scholar 

  23. Gómez-Meijide B, Pérez I (2015) Non-linear elastic behavior of bitumen emulsion stabilized materials with C&D waste aggregates. Constr Build Mater 98:853–863. https://doi.org/10.1016/j.conbuildmat.2015.07.004

    Article  Google Scholar 

  24. Gómez-Meijide B, Pérez I (2014) Effects of the use of construction and demolition waste aggregates in cold asphalt mixtures. Constr Build Mater 51:267–277. https://doi.org/10.1016/j.conbuildmat.2013.10.096

    Article  Google Scholar 

  25. Gómez-Meijide B, Pérez I, Pasandín AR (2016) Recycled construction and demolition waste in cold asphalt mixtures: evolutionary properties. J Clean Prod 112:588–598. https://doi.org/10.1016/j.jclepro.2015.08.038

    Article  Google Scholar 

  26. Hill B (2011) Performance evaluation of warm mix asphalt mixtures incorporating reclaimed asphalt pavement. Ph.D. thesis, University of Illinois at Urbana-Champaign, Urbana, USA

  27. Shu X, Huang B, Shrum ED, Jia X (2012) Laboratory evaluation of moisture susceptibility of foamed warm mix asphalt containing high percentages of RAP. Constr Build Mater 35:125–130. https://doi.org/10.1016/j.conbuildmat.2012.02.095

    Article  Google Scholar 

  28. Mogawer W, Austerman A, Mohammad L, Kutay ME (2013) Evaluation of high RAP-WMA asphalt rubber mixtures. Road Mater Pavement 14(sup2):129–147. https://doi.org/10.1080/14680629.2013.812846

    Article  Google Scholar 

  29. Dinis-Almeida M, Castro-Gomes J, Sangiorgi C, Zoorob SE, Afonso ML (2016) Performance of warm mix recycled asphalt containing up to 100% RAP. Constr Build Mater 112:1–6. https://doi.org/10.1016/j.conbuildmat.2016.02.108

    Article  Google Scholar 

  30. Tebaldi G, Dave E, Hugener M, Falchetto AC, Perraton D, Grilli A, Presti DL, Pasetto M, Loizos A, Jenkins K, Apeagyei A (2018) Cold recycling of reclaimed asphalt pavements. In: Partl MN, Porot L, Di Benedetto H, Canestrari F, Marsac P, Tebaldi G (eds) Testing and characterization of sustainable innovative bituminous materials and systems. Springer, Cham, pp 239–296

    Chapter  Google Scholar 

  31. Pasetto M, Baliello A, Giacomello G, Pasquini E (2017) Sustainable solutions for road pavements: a multi-scale characterization of warm mix asphalts containing steel slags. J Clean Prod 166:835–843

    Article  Google Scholar 

  32. Kanitpong K, Charoentham N, Likitlersuang S (2012) Investigation on the effects of gradation and aggregate type to moisture damage of warm mix asphalt modified with Sasobit. Int J Pavement Eng 13(5):451–458. https://doi.org/10.1080/10298436.2011.565058

    Article  Google Scholar 

  33. De Juan MS, Gutiérrez PA (2009) Study on the influence of attached mortar content on the properties of recycled concrete aggregate. Constr Build Mater 23(2):872–877. https://doi.org/10.1016/j.conbuildmat.2008.04.012

    Article  Google Scholar 

  34. MFOM (2015) Ministry of Public Works. Article 542 (Asphalt Concrete) of the General Technical Specifications for Road and Bridge Works (PG3) from the Spanish Ministry of Public Works. Madrid, Spain (in Spanish)

  35. AENOR (2014) Asociación Española de Normalización y Certificación. UNE-EN 1097-6 Tests for mechanical and physical properties of aggregates. Determination of particle density and water absorption. Madrid, Spain (in Spanish)

  36. AENOR (2012) Asociación Española de Normalización y Certificación. UNE-EN 933-8 Tests for geometrical properties of aggregates. Assessment of fines. Sand equivalent test. Madrid, Spain (in Spanish)

  37. AENOR (2012) Asociación Española de Normalización y Certificación. UNE-EN 933-3 Tests for geometrical properties of aggregates. Determination of particle shape. Flakiness index. Madrid, Spain (in Spanish)

  38. AENOR (2010) Asociación Española de Normalización y Certificación. UNE-EN 1097-2 Tests for mechanical and physical properties of aggregates. Methods for the determination of resistance to fragmentation. Madrid, Spain (in Spanish)

  39. AENOR (2017) Asociación Española de Normalización y Certificación. UNE-EN 13075-1 Bitumen and bituminous binders. Determination of breaking behaviour. Determination of breaking value of cationic bituminous emulsions, mineral filler method. Madrid, Spain (in Spanish)

  40. AENOR (2012) Asociación Española de Normalización y Certificación. UNE-EN 1428 Bitumen and bituminous binders. Determination of water content in bituminous emulsions. Azeotropic distillation method. Madrid, Spain (in Spanish)

  41. AENOR (2009) Asociación Española de Normalización y Certificación. UNE-EN 1431 Methods of test for petroleum and its products. Bitumen and bituminous binders. Determination of recovered binder and oil distillate from bitumen emulsions by distillation. Madrid, Spain (in Spanish)

  42. AENOR (2011) Asociación Española de Normalización y Certificación. UNE-EN 12846-1 Bitumen and bituminous binders. Determination of efflux time by the efflux viscometer. Bituminous emulsions. Madrid, Spain (in Spanish)

  43. AENOR (2013) Asociación Española de Normalización y Certificación. UNE-EN 1429 Bitumen and bituminous binders. Determination of residue on sieving of bituminous emulsions, and determination of storage stability by sieving. Madrid, Spain (in Spanish)

  44. AENOR (2009) Asociación Española de Normalización y Certificación. UNE-EN 12847 Bitumen and bituminous binders. Determination of settling tendency of bituminous emulsions. Madrid, Spain (in Spanish)

  45. ATEB (n.d.) Asociación Técnica de Emulsiones Bituminosas. Half-Warm Mix Asphalt with bitumen emulsion. Madrid, Spain (in Spanish)

  46. MOPT (2002). Public Works and Transportation Ministry. NLT-159/86. Resistance to the permanent deformation of bituminous mixtures using Marshall Apparatus. NLT Standards. Road Test. General Directorate of Highways, second edition, Madrid, Spain (in Spanish)

  47. MOPT (2002) Public Works and Transportation Ministry. NLT-145/72. Coating of the aggregate with bitumen emulsion. NLT Standards. Road Test. General Directorate of Highways, second edition, Madrid, Spain (in Spanish)

  48. AENOR (2012) Asociación Española de Normalización y Certificación. UNE-EN 12697-6 Bituminous mixtures. Test methods for hot mix asphalt. Determination of bulk density of bituminous specimens. Madrid, Spain (in Spanish)

  49. AENOR (2012) Asociación Española de Normalización y Certificación. UNE-EN 12697-5 Bituminous mixtures. Test methods for hot mix asphalt. Determination of the maximum density. Madrid, Spain (in Spanish)

  50. AENOR (2003) Asociación Española de Normalización y Certificación. UNE-EN 12697-8 Bituminous mixtures. Test methods for hot mix asphalt. Determination of void characteristics of bituminous specimens. Madrid, Spain (in Spanish)

  51. AENOR (2009) Asociación Española de Normalización y Certificación. UNE-EN 12697-12 Bituminous mixtures. Test methods for hot mix asphalt. Determination of the water sensitivity of bituminous specimens. Madrid, Spain (in Spanish)

  52. Pasetto M, Baldo N (2010) Experimental evaluation of high performance base course and road base asphalt concrete with electric arc furnace steel slags. J Hazard Mater 181:938–948. https://doi.org/10.1016/j.jhazmat.2010.05.104

    Article  Google Scholar 

  53. AENOR (2006) Asociación Española de Normalización y Certificación. UNE-EN 12697-26 Bituminous mixtures. Test methods for hot mix asphalt. Stiffness. Madrid, Spain (in Spanish)

  54. BSi (1996) British Standards Institution. Draft for Development BS DD 226:1996. Method for determining resistance to permanent deformation of bituminous mixtures subject to unconfined dynamic loading

  55. FHWA (n.d) Federal Highway Administration. Resilient modulus testing and startup procedures. Retrieved from https://www.powershow.com/viewfl/7edb4-ZDc1Z/Resilient_Modulus_Testing_and_Startup_Procedures_powerpoint_ppt_presentation. Accessed 26 May 2018

  56. He G, Wong W (2007) Laboratory study on permanent deformation of foamed asphalt mix incorporating reclaimed asphalt pavement materials. Constr Build Mater 21:1809–1819. https://doi.org/10.1016/j.conbuildmat.2006.05.024

    Article  Google Scholar 

  57. Santagata FA, Canestrari F, Pasquini E (2007) Mechanical characterization of asphalt rubber-wet process. In: Proceedings of 4th International SIV Congress, Palermo, Italy

  58. Aschuri I, Woodward D, Woodside A (2009) Permanent deformation characteristics of asphalt concrete containing reclaimed materials. In: Sixth international conference on maintenance and rehabilitation of pavements and technological control, Politechnico di Torino, Italy, vol 1, pp 232–242

  59. Babadopulos LFAL, Ferreira JLS, Soares JB (2016) An approach to couple aging to stiffness and permanent deformation modeling of asphalt mixtures. Mater Struct 49:4929. https://doi.org/10.1617/s11527-016-0834-4

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Spanish Ministry of Education and Science for sponsoring this research through Project BIA2013-47987-C3-2-R. The authors would like to thank Ecoasfalt S.A. for supplying the bitumen emulsion required for this study, Tec-Rec for supplying the recycled concrete aggregates, and Probigasa for supplying the natural aggregates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Pasandín.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasandín, A.R., Pérez, I., Caamaño, L. et al. Feasibility of using recycled concrete aggregates for half-warm mix asphalt. Mater Struct 51, 81 (2018). https://doi.org/10.1617/s11527-018-1212-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-018-1212-1

Keywords

Navigation