Skip to main content
Log in

Towards poured earth construction mimicking cement solidification: demonstration of feasibility via a biosourced polymer

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The feasibility of building with earth in the same and simple way as cement-based concrete has been demonstrated as an environmental-friendly alternative. Sodium alginate, a bio-sourced polymer, is used to induce a liquid–solid transition to a clay based suspension, similar to hydraulic binders. The polymer gelation occurs via calcium ions released from the binding phase through a gentle acidification of the mix. It leads to a substantial solidification of the wet material, theoretically sufficient to remove the formwork of an earth wall within 24 h without waiting for drying. Working time is adjusted using a chelator which forms complexes with calcium ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Barcelo L, Kline J, Walenta G, Gartner E (2014) Cement and carbon emissions. Mater Struct 47:1055–1065. doi:10.1617/s11527-013-0114-5

    Article  Google Scholar 

  2. Pacheco-Torgal F, Jalali S (2012) Earth construction: lessons from the past for future eco-efficient construction. Constr Build Mater 29:512–519

    Article  Google Scholar 

  3. Moevus M, Fontaine L, Anger R, Doat P (2013) Environmental Clay Concrete (B.A.E). Paris, France: scientific report, programme C2D2. Ministère de l’Ecologie, du Développement Durable et de l’Energie (in French)

  4. Mariette MOEVUS-DORVAUX Lucile COUVREUR, Basile CLOQUET, Laetitia FONTAINE, Romain ANGER, Patrice DOAT Béton d’Argile Environnemental 2010–2013, Résultats d’un programme de recherche tourné vers l’application (in French)

  5. Moevus M, Jorand Y, Olagnon C, Maximilien S, Anger R, Fontaine L, Arnaud L (2015) Earthen construction: an increase of the mechanical strength by optimizing the dispersion of the binder phase. Mater Struct 49:1555–1568. doi:10.1617/s11527-015-0595-5

    Article  Google Scholar 

  6. Ouellet-Plamondon CM, Habert G (2016) Self-compacted clay based concrete (SCCC): proof-of-concept. J Clean Prod 117:160–168. doi:10.1016/j.jclepro.2015.12.048

    Article  Google Scholar 

  7. Corradi A, Manfredini T, Pellacani G, Pozzi P (1994) De-flocculation of concentrated aqueous clay suspensions with sodium polymethacrylates. J Am Ceram Soc 77:509–513

    Article  Google Scholar 

  8. Garrido L, Volzone C (1997) OH-Al polymers and HMP adsorption on kaolinite: experimental conditions and viscosity of deflocculated suspensions. Colloid Surf A 121:163–171. doi:10.1016/S0927-7757(96)03969-6

    Article  Google Scholar 

  9. Zaman A, Mathur S (2004) Influence of dispersing agents and solution conditions on the solubility of crude kaolin. J Colloid Interface Sci 271:124–130

    Article  Google Scholar 

  10. Andreola F, Castellini E, Ferreira J, Olhero S, Romagnoli M (2006) Effect of sodium hexametaphosphate and ageing on the rheological behaviour of kaolin dispersions. Appl Clay Sci 31:56–64

    Article  Google Scholar 

  11. Van Damme H, Zabat M, Laurent JP (2004) Nature and distribution of cohesive forces in earthen building materials. In: International conference on the conservation of grotto sites; motto grottoes, Dunhuang, pp 1–538

  12. Perrot A, Rangeard D, Levigneur A (2016) Linking rheological and geotechnical properties of kaolinite materials for earthen construction. Mater Struct. doi:10.1617/s11527-016-0813-9

    Google Scholar 

  13. Bui QB, Morel JC, Venkatarama Reddy BV, Ghayada W (2009) Durability of rammed earth walls exposed for 20 years to natural weathering. Build Environ 44:912–919. doi:10.1016/j.buildenv.2008.07.001

    Article  Google Scholar 

  14. Lefebvre A (2012) Process for erecting at least one vertical wall made from earth. FR Pat. 2964991

  15. Venkatarama Reddy BV, Prasanna Kumar P (2010) Embodied energy in cement stabilised rammed earth walls. Energy Build 42:380–385

    Article  Google Scholar 

  16. Venkatarama Reddy BV, Latha MS (2014) Retrieving clay minerals from stabilised soil compacts. Appl Clay Sci 101:362–368. doi:10.1016/j.clay.2014.08.027

  17. Morel JC, Aubert JE, Millogo Y, Hamard E, Fabbri A (2013) Some observations about the paper ‘Earth construction: lessons from the past for future eco-efficient construction’ by F. Pacheco-Torgal, S. Jalali. Constr Build Mater 44:419–421

    Article  Google Scholar 

  18. Gauckler LJ, Graule T, Baader F (1999) Ceramic forming using enzyme catalyzed reactions. Mater Chem Phys 61:78–102

    Article  Google Scholar 

  19. Janney MA (1990) Method for molding ceramic powders, US Pat. 4894194

  20. Omette OO, Janney MA, Strehlow RA (1991) Gelcasting: a new ceramic forming process. Am Ceram Soc Bull 70:1641–1649

    Google Scholar 

  21. Young AC, Omette OO, Janney MA, Menchhofer PA (1991) Gelcasting of alumina. J Am Ceram Soc 74:612–618

    Article  Google Scholar 

  22. Vandeperre LJ, De Wilde AM, Luyten J (2003) Gelatin gelcasting of ceramic components. J Mater Process Technol 135:312–316

    Article  Google Scholar 

  23. Xie Z-P, Chen Y-L, Huang Y (2000) A novel casting forming for ceramics by gelatine and enzyme catalysis. J Eur Ceram Soc 20:253–257

    Article  Google Scholar 

  24. Santacruz I, Nieto MI, Moreno R (2005) Alumina bodies with near-to-theoretical density by aqueous gelcasting using concentrated agarose solutions. Ceram Int 31:439–445

    Article  Google Scholar 

  25. Olhero SM, Tarì, Coimbra MA, Ferreira JMF (2000) Synergy of polysaccharide mixtures in gelcasting of alumina. J Eur Ceram Soc 20:423–429

    Article  Google Scholar 

  26. Millán AJ, Nieto MI, Moreno R (2001) Aqueous gel-forming of silicon nitride using carrageenans. J Am Ceram Soc 84(1):62–64

    Article  Google Scholar 

  27. Santacruz I, Nieto MI, Moreno R (2002) Rheological characterization of synergistic mixtures of carrageenan and locust bean gum for aqueous gelcasting of alumina. J Am Ceram Soc 85:2432–2436

    Article  Google Scholar 

  28. Minatti JL, Santana JGA, Fernandes RS, Campos E (2009) Alumina developed by pre-gelling starch consolidation (PSC). J Eur Ceram Soc 29:661–668

    Article  Google Scholar 

  29. Hareesh UNS, Anantharaju R, Biswas P, Rajeswari K, Johnson R (2011) Colloidal shaping of alumina ceramics by thermally induced gelation of methylcellulose. J Am Ceram Soc 94:749–753

    Article  Google Scholar 

  30. Lyckfeldt O, Brandt J, Lesca S (2000) Protein forming—a novel shaping technique for ceramics. J Eur Ceram Soc 20:2551–2559

    Article  Google Scholar 

  31. Xie Z, Wang X, Jia Y, Huang Y (2003) Ceramic forming based on gelation principle and process of sodium alginate. Mater Lett 57:1635–1641

    Article  Google Scholar 

  32. Jia Y, Kanno Y, Xie Z-P (2003) Fabrication of alumina green body through gelcasting process using alginate. Mater Lett 57:2530–2534

    Article  Google Scholar 

  33. Jia Y, Kanno Y, Xie Z (2002) New gel-casting process for alumina ceramics based on gelation of alginate. J Eur Ceram Soc 22:1911–1916

    Article  Google Scholar 

  34. Wang X, Xie Z-P, Huang Y, Cheng Y-B (2002) Gelcasting of silicon carbide based on gelation of sodium alginate. Ceram Int 28:865–871

    Article  Google Scholar 

  35. Studart AR, Pandolfelli VC, Tervoort E, Gauckler LJ (2002) Gelling of alumina suspensions using alginic acid salt and hydroxyaluminum diacetate. J Am Ceram Soc 85:2711–2718

    Article  Google Scholar 

  36. Kraan S (2010) Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production. Mitig Adapt Strateg Glob Change 18:27–46

    Article  Google Scholar 

  37. Jogdand SN, Biopolymers (2014) 408, Archana Building, Sector-17. Vashi, Navi Mumbai Biotech support services (India)

  38. Martinsen A, Skjåk-Bræk G, Smidsrød O (1989) Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads. Biotechnol Bioeng 33:79–89

    Article  Google Scholar 

  39. Draget KI, Østgaard K, Smidsrød O (1989) Alginate-based solid media for plant tissue culture. Appl Microbiol Biotechnol 31:79–83

    Article  Google Scholar 

  40. Mancini M, Moresi M, Mancini R (1999) Mechanical properties of alginate gels: empirical characterisation. J Food Eng 39:369–378

    Article  Google Scholar 

  41. Kuo CK, Ma PX (2001) Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties. Biomaterials 22:511–521

    Article  Google Scholar 

  42. Draget KI, Østgaard K, Smidsrød O (1991) Homogeneous alginate gels: a technical approach. Carbohydr Polym 14:159–178

    Article  Google Scholar 

  43. Schneider GL (1977) Method of stabilizing soils. US Pat. 4022633

  44. Galán-Marín C, Rivera-Gómez C, Petric J (2016) Clay-based composite stabilized with natural polymer and fibre. Constr Build Mater 24:1462–1468

    Article  Google Scholar 

  45. Dove CA, Bradley FF, Patwardhan SV (2016) Seaweed biopolymers as additives for unfired clay bricks. Mater Struct 49:4463–4482. doi:10.1617/s11527-016-0801-0

    Article  Google Scholar 

  46. Grasdalen H, Larsen B, Smidsrød O (1979) A p.m.r. study of the composition and sequence of uronate residues in alginates. Carbohydr Res 68:23–33

    Article  Google Scholar 

  47. Ronsoux L, Moevus M, Jorand Y, Maximilien M, Olagnon C et al (2013) Poured earth as concrete. Terra 2012, Apr 2012, Lima, Peru. Theme 6: research in materials and technology for conservation and contemporary architecture

  48. Draget KI, Simensen MK, Onsøyen E, Smidsrød O (1993) Gel strength of Ca-limited alginate gels made in situ. Hydrobiologia 260–261:563–565

    Article  Google Scholar 

  49. De Kort E, Minor M, Snoeren T, Van Hooijdonk T, Van Der Linden E (2009) Calcium-binding capacity of organic and inorganic ortho- and polyphosphates. Dairy Sci Technol 89:283–299

    Article  Google Scholar 

  50. Irani RD, Callis CF (1962) Calcium and magnesium sequestration by sodium and potassium polyphosphates. J Am Oil Chem Soc 39:156–159

    Article  Google Scholar 

  51. Ferraris CF (1999) Measurement of the rheological properties of high performance concrete: state of art report. J Res Natl Inst Stand Technol 104:461

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thanks Rhône-Alpes Region for the grant of Alban Pinel doctoral fellowship.

Funding

This study was funded by “Région Rhône Alpes”, France (ARC 2013-0077 13-009672-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Jorand.

Ethics declarations

Conflict of interest

Author Alban Pinel has received research grants from “Région Rhône Alpes”. The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinel, A., Jorand, Y., Olagnon, C. et al. Towards poured earth construction mimicking cement solidification: demonstration of feasibility via a biosourced polymer. Mater Struct 50, 224 (2017). https://doi.org/10.1617/s11527-017-1092-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-017-1092-9

Keywords

Navigation