Skip to main content
Log in

Laboratory investigation of the properties of epoxy asphalt rubber (EAR)

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Crumb rubber is preliminarily mixed with asphalt in wet process to produce ductile and elastic asphalt rubber (AR), which has been extensively used in high performance bituminous mixtures for road pavement. Epoxy asphalt is a thermosetting polymer modified asphalt with excellent performance and has been widely applied on the pavement of steel bridge decks. Epoxy asphalt rubber (EAR) was prepared by mixing AR with the epoxy (EP). The effect of AR concentration on the phase-separated morphology, viscosity, thermal stability and mechanical properties of the neat EP were compared with that of asphalt. Laser scanning confocal microscopy observations revealed that AR particles disperse in the continuous epoxy phase with co-continuous phase-separated structures in EARs with 40 and 50 wt% AR. However, the phase inverts to continuous asphalt structures with dispersed spherical and co-continuous epoxy phase as AR concentration reaches 60 wt%. The addition of AR increases the viscosity of the neat EP. The thermal stability of the neat EP is improved with the incorporation of AR. The presence of AR decreases the tensile strength of the neat EP, while the elongation at break of the neat EP increases with the increase of AR concentration. The viscosity and mechanical properties of EAR with 50 wt% AR completely satisfy the technical requirement of hot-mix epoxy asphalt binder for steel bridge deck pavements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cao Q (2015) Comprehensive utilization situation in 2014 & prediction in 2015 of China waste rubber industry. Paper presented at the 2015 China Rubber Conference, Guangzhou, 4 April

  2. Liu S, Cao W, Fang J, Shang S (2009) Variance analysis and performance evaluation of different crumb rubber modified (CRM) asphalt. Constr Build Mater 23(7):2701–2708. doi:10.1016/j.conbuildmat.2008.12.009

    Article  Google Scholar 

  3. Navarro FJ, Partal P, Martinez-Boza F, Gallegos C (2005) Influence of crumb rubber concentration on the rheological behavior of a crumb rubber modified bitumen. Energy Fuels 19(5):1984–1990. doi:10.1021/ef049699a

    Article  Google Scholar 

  4. Lo Presti D (2013) Recycled tyre rubber modified bitumens for road asphalt mixtures: a literature review. Constr Build Mater 49:863–881. doi:10.1016/j.conbuildmat.2013.09.007

    Article  Google Scholar 

  5. Frantzis P (2004) Crumb rubber–bitumen interactions: diffusion of bitumen into rubber. J Mater Civ Eng 16(4):387–390. doi:10.1061/(asce)0899-1561(2004)16:4(387)

    Article  Google Scholar 

  6. Ge D, Yan K, You Z, Xu H (2016) Modification mechanism of asphalt binder with waste tire rubber and recycled polyethylene. Constr Build Mater 126:66–76. doi:10.1016/j.conbuildmat.2016.09.014

    Article  Google Scholar 

  7. Fang CQ, Qiao XT, Yu RE, Yu X, Liu JJ, Yu J, Xia RH (2016) Influence of modification process parameters on the properties of crumb rubber/EVA modified asphalt. J Appl Polym Sci 33(27):13. doi:10.1002/app.43598

    Google Scholar 

  8. Yousefi Kebria D, Moafimadani SR, Goli Y (2015) Laboratory investigation of the effect of crumb rubber on the characteristics and rheological behaviour of asphalt binder. Road Mater Pavement Des 16(4):946–956. doi:10.1080/14680629.2015.1042015

    Article  Google Scholar 

  9. Yu X (2014) Investigation of the rheological modification mechanism of warm-mix additives on crumb-rubber-modified asphalt. J Mater Civ Eng 26(2):312–319. doi:10.1061/(ASCE)MT.1943-5533.0000808

    Article  Google Scholar 

  10. Williams RJJ, Rozenberg BA, Pascault J-P (1997) Reaction-induced phase separation in modified thermosetting polymers. In: Polymer analysis polymer physics. Springer, Berlin, pp 95–156. doi:10.1007/3-540-61218-1_7

  11. Yin HY, Wang CS, Wang YT, Yuan ZR, Wang ZL, Xie HF, Cheng RS (2012) Cure reaction and morphology of epoxy asphalts. Polym Mater Sci Eng 28(11):30–33

    Google Scholar 

  12. Sun YF, Zhang YG, Xu K, Xie HF, Wang ZL, Cheng RS (2016) Comparative studies of domestic epoxy asphalt binders. J Nanjing Univ (Nat Sci) 52(2):213–220

    Google Scholar 

  13. Xie HF, Dai J, Liu CG, Yuan ZR, Wang ZL, Cheng RS (2009) Thermal analysis of epoxy asphalts. Polym Mater Sci Eng 25(11):115–117

    Google Scholar 

  14. Zhou X, Wu S, Liu G, Pan P (2016) Molecular simulations and experimental evaluation on the curing of epoxy bitumen. Mater Struct 49(1):241–247. doi:10.1617/s11527-014-0491-4

    Article  Google Scholar 

  15. Kang Y, Chen Z, Jiao Z, Huang W (2010) Rubber-like thermosetting epoxy asphalt composites exhibiting atypical yielding behaviors. J Appl Polym Sci 116(3):1678–1685. doi:10.1002/app.31563

    Google Scholar 

  16. Sun Y, Zhang Y, Xu K, Xu W, Yu D, Zhu L, Xie H, Cheng R (2015) Thermal, mechanical properties, and low-temperature performance of fibrous nanoclay-reinforced epoxy asphalt composites and their concretes. J Appl Polym Sci 132(12):41694. doi:10.1002/app.41694

    Google Scholar 

  17. Xiao Y, van de Ven MFC, Molenaar AAA, Su Z, Zandvoort F (2011) Characteristics of two-component epoxy modified bitumen. Mater Struct 44(3):611–622. doi:10.1617/s11527-010-9652-2

    Article  Google Scholar 

  18. Luo S, Lu Q, Qian Z (2015) Performance evaluation of epoxy modified open-graded porous asphalt concrete. Constr Build Mater 76:97–102. doi:10.1016/j.conbuildmat.2014.11.057

    Article  Google Scholar 

  19. Zhang Y, Pan X, Sun Y, Xu W, Pan Y, Xie H, Cheng R (2014) Flame retardancy, thermal, and mechanical properties of mixed flame retardant modified epoxy asphalt binders. Constr Build Mater 68:62–67. doi:10.1016/j.conbuildmat.2014.06.028

    Article  Google Scholar 

  20. Lu Q, Bors J (2015) Alternate uses of epoxy asphalt on bridge decks and roadways. Constr Build Mater 78:18–25. doi:10.1016/j.conbuildmat.2014.12.125

    Article  Google Scholar 

  21. Qian Z, Wang R, Chen T (2014) Performance of epoxy asphalt and its mixture under different rubber powder dosages. J Build Mater 17(2):331–335

    Google Scholar 

  22. Yin H, Zhang Y, Sun Y, Xu W, Yu D, Xie H, Cheng R (2015) Performance of hot mix epoxy asphalt binder and its concrete. Mater Struct 48(11):3825–3835. doi:10.1617/s11527-014-0442-0

    Article  Google Scholar 

  23. Liu Y, Zhang J, Chen R, Cai J, Xi Z, Xie H (2017) Ethylene vinyl acetate copolymer modified epoxy asphalt binders: phase separation evolution and mechanical properties. Constr Build Mater 137:55–65. doi:10.1016/j.conbuildmat.2017.01.081

    Article  Google Scholar 

  24. Wang YT, Wang CS, Yin HY, Wang LL, Xie HF, Cheng RS (2012) Carboxyl-terminated butadiene-acrylonitrile-toughened epoxy/carboxyl-modified carbon nanotube nanocomposites: thermal and mechanical properties. Express Polym Lett 6(9):719–728. doi:10.3144/expresspolymlett.2012.77

    Article  Google Scholar 

  25. Zhang JS, Wang YT, Wang XS, Ding GW, Pan YQ, Xie HF, Chen QM, Cheng RS (2014) Effects of amino-functionalized carbon nanotubes on the properties of amine-terminated butadiene–acrylonitrile rubber-toughened epoxy resins. J Appl Polym Sci 131(13):40472. doi:10.1002/App.40472

    Google Scholar 

  26. Kang Y, Song M, Pu L, Liu T (2015) Rheological behaviors of epoxy asphalt binder in comparison of base asphalt binder and SBS modified asphalt binder. Constr Build Mater 76:343–350. doi:10.1016/j.conbuildmat.2014.12.020

    Article  Google Scholar 

  27. Sengoz B, Isikyakar G (2008) Analysis of styrene-butadiene-styrene polymer modified bitumen using fluorescent microscopy and conventional test methods. J Hazard Mater 150(2):424–432. doi:10.1016/j.jhazmat.2007.04.122

    Article  Google Scholar 

  28. Xiang L, Cheng J, Que G (2009) Microstructure and performance of crumb rubber modified asphalt. Constr Build Mater 23(12):3586–3590. doi:10.1016/j.conbuildmat.2009.06.038

    Article  Google Scholar 

  29. Jeong K-D, Lee S-J, Amirkhanian SN, Kim KW (2010) Interaction effects of crumb rubber modified asphalt binders. Constr Build Mater 24(5):824–831. doi:10.1016/j.conbuildmat.2009.10.024

    Article  Google Scholar 

  30. Yamanaka K, Inoue T (1990) Phase separation mechanism of rubber-modified epoxy. J Mater Sci 25(1):241–245. doi:10.1007/bf00544214

    Article  Google Scholar 

  31. Yamanaka K, Takagi Y, Inoue T (1989) Reaction-induced phase separation in rubber-modified epoxy resins. Polymer 30(10):1839–1844. doi:10.1016/0032-3861(89)90355-8

    Article  Google Scholar 

  32. Heitzman M (1992) Design and construction of asphalt paving materials with crumb rubber modifier. Transp Res Rec 1339:1–8

    Google Scholar 

  33. Wang M, Yu Y, Wu X, Li S (2004) Polymerization induced phase separation in poly(ether imide)-modified epoxy resin cured with imidazole. Polymer 45(4):1253–1259. doi:10.1016/j.polymer.2003.12.037

    Article  Google Scholar 

  34. Yu Y, Shen G, Liu Z (2015) Morphology of epoxy/thermoplastic blends. In: Parameswaranpillai J, Hameed N, Pionteck J, Woo EM (eds) Handbook of epoxy blends. Springer, Cham, pp 1–34. doi:10.1007/978-3-319-18158-5_18-1

  35. Asphalt Institute (2003) Performance graded asphalt binder specification and testing superpave. Series No. 1 (SP-1). Asphalt Institute, Lexington, KY

  36. Thodesen C, Shatanawi K, Amirkhanian S (2009) Effect of crumb rubber characteristics on crumb rubber modified (CRM) binder viscosity. Constr Build Mater 23(1):295–303. doi:10.1016/j.conbuildmat.2007.12.007

    Article  Google Scholar 

  37. Lougheed TJ, Papagiannakis AT (1996) Viscosity characteristics of rubber-modified asphalts. J Mater Civ Eng 8(3):153–156. doi:10.1061/(asce)0899-1561(1996)8:3(153)

    Article  Google Scholar 

  38. Qian Z, Chen C, Jiang C, Smit AdF (2013) Development of a lightweight epoxy asphalt mixture for bridge decks. Constr Build Mater 48:516–520. doi:10.1016/j.conbuildmat.2013.06.096

    Article  Google Scholar 

  39. Zhao H, Cao Y, Sit SP, Lineberry Q, Pan W (2012) Thermal characteristics of bitumen pyrolysis. J Therm Anal Calorim 107(2):541–547. doi:10.1007/s10973-011-1590-x

    Article  Google Scholar 

  40. Seidelt S, Müller-Hagedorn M, Bockhorn H (2006) Description of tire pyrolysis by thermal degradation behaviour of main components. J Anal Appl Pyrol 75(1):11–18. doi:10.1016/j.jaap.2005.03.002

    Article  Google Scholar 

  41. Ghavibazoo A, Abdelrahman M (2013) Composition analysis of crumb rubber during interaction with asphalt and effect on properties of binder. Int J Pavement Eng 14(5):517–530. doi:10.1080/10298436.2012.721548

    Article  Google Scholar 

  42. Liu YL, Wu CS, Chiu YS, Ho WH (2003) Preparation, thermal properties, and flame retardance of epoxy-silica hybrid resins. J Polym Sci Part A Polym Chem 41(15):2354–2367. doi:10.1002/pola.10778

    Article  Google Scholar 

  43. Putman BJ, Amirkhanian SN (2010) Characterization of the interaction effect of crumb rubber modified binders using HP-GPC. J Mater Civ Eng 22(2):153–159. doi:10.1061/(asce)0899-1561(2010)22:2(153)

    Article  Google Scholar 

  44. Nakanishi H, Takei S, Kasugai N (2005) Strength generation of epoxy asphalt mixture. In: 3rd China–Japan workshop on pavement technologies, Nanjing, China

  45. Yin HY, Jin H, Wang CS, Sun YF, Yuan ZR, Xie HF, Wang ZL, Cheng RS (2014) Thermal, damping, and mechanical properties of thermosetting epoxy-modified asphalts. J Therm Anal Calorim 115(2):1073–1080. doi:10.1007/s10973-013-3449-9

    Article  Google Scholar 

Download references

Funding

This study was funded by the Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) and Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongfeng Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4377 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xi, Z., Cai, J. et al. Laboratory investigation of the properties of epoxy asphalt rubber (EAR). Mater Struct 50, 219 (2017). https://doi.org/10.1617/s11527-017-1089-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-017-1089-4

Keywords

Navigation