Skip to main content

Advertisement

Log in

Characterisation and valorisation of biomass waste as a possible addition in eco-cement design

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The use of biomass to generate energy has grown significantly in recent years in response to social awareness and renewable-based sustainability policies geared to conserving the environment and eradicating coal as a raw material in electric power production. The bioenergy industry also gives rise to by-products or waste, however, most of which are presently deposited in landfills. This study aims to characterise three types of biomass waste from Spanish bioenergy plants with a view to their valorisation as additions in the design of new eco-efficient cements with a lower clinker content. The focus is on the pozzolanicity of this waste and the hydration products formed in the biomass waste/Ca(OH)2 system. The findings show that irrespective of their nature, all three types of waste are apt for use in the cement industry or in concrete as supplementary cementitious materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Nunes LJR, Matias JCO, Catalão JPS (2016) Biomass combustion systems: a review on the physical and chemical properties of the ashes. Renew Sustain Energy Rev 53:235–242

    Article  Google Scholar 

  2. Nunes LJR, Matias JCO, Catalão JS (2017) Biomass in the generation of electricity in Portugal: a review. Renew Sustain Energy Rev 71:373–378

    Article  Google Scholar 

  3. Scarlat N, Dallemand J-F, Monforti-Ferrario F, Nita V (2015) The role of biomass and bioenergy in a future bioeconomy: policies and facts. Environ Dev 15:3–34

    Article  Google Scholar 

  4. Modolo RCE, Silva T, Senff L, Tarelho LAC, Labrincha JA, Ferreira VM, Silva L (2015) Bottom ash from biomass combustion in BFB and its use in adhesive-mortars. Fuel Process Technol 129:192–202

    Article  Google Scholar 

  5. European Union. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Official Journal of the European Union

  6. United Nations (2016) The Paris Agreement. http://unfccc.int/paris_agreement/items/9485.php. Accessed 04 Jan 17

  7. Ohenoja K, Tanskanen P, Peltosaari O, Wigren V, Österbacka J, Illikainen M (2016) Effect of particle size distribution on the self-hardening property of biomass-peat fly ash from a bubbling fluidized bed combustion. Fuel Process Technol 148:60–66

    Article  Google Scholar 

  8. European Commission (2011) A roadmap for moving to a competitive low carbon economy in 2050

  9. Barcelo L, Kline J, Walenta G, Gartner E (2014) Cement and carbon emissions. Mater Struct 47:1055–1065

    Article  Google Scholar 

  10. Shen W, Cao L, Li Q, Zhang W, Wang G, Li C (2015) Quantifying CO2 emissions from China’s cement industry. Renew Sustain Energy Rev 50:1004–1012

    Article  Google Scholar 

  11. Oh D-Y, Noguchi T, Kitagaki R, Park W-J (2014) CO2 emission reduction by reuse of building material waste in the Japanese cement industry. Renew Sustain Energy Rev 38:796–810

    Article  Google Scholar 

  12. Wang S, Miller A, Llamazos E, Fonseca F, Baxter L (2008) Biomass fly ash in concrete: mixture proportioning and mechanical properties. Fuel 87:365–371

    Article  Google Scholar 

  13. Cordeiro GC, Toledo RD, de Moraes E (2009) Use of ultrafine rice husk ash with high-carbon content as pozzolan in high performance concrete. Mater Struct 42:983–992

    Article  Google Scholar 

  14. Gómez-Barea A, Vilches LF, Leiva C, Campoy M, Fernández-Pereira C (2009) Plant optimisation and ash recycling in fluidised bed waste gasification. Chem Eng J 146:227–236

    Article  Google Scholar 

  15. Fernández-Pereira C, de la Casa JA, Gómez-Barea A, Arroyo F, Leiva C, Luna Y (2011) Application of biomass gasification fly ash for brick manufacturing. Fuel 90:220–232

    Article  Google Scholar 

  16. Cuenca J, Rodríguez J, Martín-Morales M, Sánchez-Roldán Z, Zamorano M (2013) Effects of olive residue biomass fly ash as filler in self-compacting concrete. Constr Build Mater 40:702–709

    Article  Google Scholar 

  17. Hinojosa MJR, Galván AP, Agrela F, Perianes M, Barbudo A (2014) Potential use of biomass bottom ash as alternative construction material: conflictive chemical parameters according to technical regulations. Fuel 128:248–259

    Article  Google Scholar 

  18. Cabrera M, Agrela F, Ayuso J, Galvin AP, Rosales J (2016) Feasible use of biomass bottom ash in the manufacture of cement treated recycled materials. Mater Struct 49:3227–3238

    Article  Google Scholar 

  19. Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2013) An overview of the composition and application of biomass ash: part 2. Potential utilisation, technological and ecological advantages and challenges. Fuel 105:19–39

    Article  Google Scholar 

  20. Rajamma R, Ball RJ, Tarelho LAC, Allen GC, Labrincha JOA, Ferreira VM (2009) Characterisation and use of biomass fly ash in cement-based materials. J Hazard Mater 172:1049–1060

    Article  Google Scholar 

  21. Frías M, Savastano H, Villar E, Sánchez de Rojas MI, Santos S (2012) Characterization and properties of blended cement matrices containing activated bamboo leaf wastes. Cem Concr Compos 34:1019–1023

    Article  Google Scholar 

  22. Frías M, Villar E, Savastano H (2011) Brazilian sugar cane bagasse ashes from the cogeneration industry as active pozzolans for cement manufacture. Cem Concr Compos 33:490–496

    Article  Google Scholar 

  23. Villar-Cociña E, Morales EV, Santos SF, Savastano H, Frías M (2011) Pozzolanic behavior of bamboo leaf ash: characterization and determination of the kinetic parameters. Cem Concr Compos 33:68–73

    Article  Google Scholar 

  24. González-López JR, Ramos-Lara JF, Zaldivar-Cadena A, Chávez-Guerrero L, Magallanes-Rivera RX, Burciaga-Díaz O (2015) Small addition effect of agave biomass ashes in cement mortars. Fuel Process Technol 133:35–42

    Article  Google Scholar 

  25. Rodier L, Bilba K, Onésippe C, Arsène MA (2017) Study of pozzolanic activity of bamboo stem ashes for use as partial replacement of cement. Mater Struct 50:87

    Article  Google Scholar 

  26. Wang G, Shen L, Sheng C (2012) Characterization of biomass ashes from power plants firing agricultural residues. Energy Fuels 26:102–111

    Article  Google Scholar 

  27. Magdziarz A, Dalai AK, Koziński JA (2016) Chemical composition, character and reactivity of renewable fuel ashes. Fuel 176:135–145

    Article  Google Scholar 

  28. Khan AA, de Jong W, Jansens PJ, Spliethoff H (2009) Biomass combustion in fluidized bed boilers: potential problems and remedies. Fuel Process Technol 90:21–50

    Article  Google Scholar 

  29. Nurmesniemi H, Manskinen K, Pöykiö R, Dahl O (2012) Forest fertilizer properties of the botton ash and fly ash from a large-sized (115 MW) industrial power plant incinerating wood-based biomass residues. J Chem Technol Metall 47:43–52

    Google Scholar 

  30. European Commission (2014) Commission decision of 18 December 2014 amending Decision 2000/532/EC on the list of waste pursuant to Directive 2008/98/EC of the European Parliament and of the Council. Official Journal of the European Union

  31. Sayanam RA, Kalsotra AK, Mehta SK, Singh RS, Mandal G (1989) Studies on thermal transformations and pozzolanic activities of clay from Jammu region (India). J Therm Anal 35:99–106

    Article  Google Scholar 

  32. Sánchez de Rojas MI, Frías M (1996) The pozzolanic activity of different materials, its influence on the hydration heat in mortars. Cem Concr Res 26:203–213

    Article  Google Scholar 

  33. Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2010) An overview of the chemical composition of biomass. Fuel 89:913–933

    Article  Google Scholar 

  34. Vassilev SV, Baxter D, Andersen LK, Vassileva CG, Morgan TJ (2012) An overview of the organic and inorganic phase composition of biomass. Fuel 94:1–33

    Article  Google Scholar 

  35. ASTM International (2015) ASTM C618-15. Standard specification for coal fly ash and raw or calcined natrual pozzolan for use in concrete

  36. European Committee for Standardization (2013) EN 450-1. Fly ash for concrete. Part 1: definition, specifications and conformity criteria

  37. European Committee for Standardization (2011) EN 197-1. Cement. Composition, specifications and conformity criteria for common cements

  38. Spanish Committee for Standardization (2012) UNE 80225. Methods of testing cement. Chemical analysis. Determination of reactive silica content in cements, puzzolanas and fly ash

  39. Du S, Yang H, Qian K, Wang X, Chen H (2014) Fusion and transformation properties of the inorganic components in biomass ash. Fuel 117:1281–1287

    Article  Google Scholar 

  40. Arvelakis S, Jensen PA, Dam-Johansen K (2004) Simultaneous thermal analysis (STA) on ash from high-alkali biomass. Energy Fuels 18:1066–1076

    Article  Google Scholar 

  41. Henry DG, Watson JS, John CM (2017) Assessing and calibrating the ATR-FTIR approach as a carbonate rock characterization tool. Sediment Geol 347:36–52

    Article  Google Scholar 

  42. Khorami J, Lemieux A, Dunnigan J, Nadeau D (1987) Induced conversion of aluminium silicate fibers into mullite and cristobalite by elevated temperatures: a comparative study on two commercial products. Thermochim Acta 120:1–7

    Article  Google Scholar 

  43. Mollah MYA, Promreuk S, Schennach R, Cocke DL, Güler R (1999) Cristobalite formation from thermal treatment of Texas lignite fly ash. Fuel 78:1277–1282

    Article  Google Scholar 

  44. Tang C, Zhu J, Li Z, Zhu R, Zhou Q, Wei J, He H, Tao Q (2015) Surface chemistry and reactivity of SiO2 polymorphs: a comparative study on α-quartz and α-cristobalite. Appl Surf Sci 355:1161–1167

    Article  Google Scholar 

  45. Senthil Kumar R, Rajkumar P (2014) Characterization of minerals in air dust particles in the state of Tamilnadu, India through FTIR, XRD and SEM analyses. Infrared Phys Technol 67:30–41

    Article  Google Scholar 

  46. Padmaja P, Anilkumar GM, Mukundan P, Aruldhas G, Warrier KGK (2001) Characterisation of stoichiometric sol–gel mullite by fourier transform infrared spectroscopy. Int J Inorg Mater 3:693–698

    Article  Google Scholar 

  47. Yu P, Kirkpatrick RJ, Poe B, McMillan PF, Cong X (1999) Structure of calcium silicate hydrate (C–S–H): near-, mid-, and far-infrared spectroscopy. J Am Ceram Soc 82:742–748

    Article  Google Scholar 

  48. Voll D, Angerer P, Beran A, Schneider H (2002) A new assignment of IR vibrational modes in mullite. Vib Spectrosc 30:237–243

    Article  Google Scholar 

  49. Yılmaz H, Kaçmaz H (2012) Distinguishing opaline silica polymorphs from α-cristobalite in Gedikler bentonite (Uşak, Turkey). Appl Clay Sci 62–63:80–86

    Article  Google Scholar 

  50. Leivo J, Lindén M, Rosenholm JM, Ritola M, Teixeira CV, Levänen E, Mäntylä TA (2008) Evolution of aluminosilicate structure and mullite crystallization from homogeneous nanoparticulate sol–gel precursor with organic additives. J Eur Ceram Soc 28:1749–1762

    Article  Google Scholar 

  51. Saez del Bosque IF, Martinez-Ramirez S, Blanco-Varela MT (2014) FTIR study of the effect of temperature and nanosilica on the nanostructure of C–S–H gel formed by hydrating tricalcium silicate. Constr Build Mater 52:314–323

    Article  Google Scholar 

  52. Medina C, Saez del Bosque IF, Asensio E, Frias M, Sanchez de Rojas MI (2016) Mineralogy and microstructure of hydrated phases during the pozzolanic reaction in the sanitary ware waste/Ca(OH)2 system. J Am Ceram Soc 99:340–348

    Article  Google Scholar 

  53. Sanchez de Rojas MI, Marin F, Rivera J, Frias M (2006) Morphology and properties in blended cements with ceramic wastes as a pozzolanic material. J Am Ceram Soc 89:3701–3705

    Article  Google Scholar 

  54. Medina C, Banfill PFG, Sánchez de Rojas MI, Frías M (2013) Rheological and calorimetric behaviour of cements blended with containing ceramic sanitary ware and construction/demolition waste. Constr Build Mater 40:822–831

    Article  Google Scholar 

  55. Medina G, Sáez del Bosque IF, Frías M, Sánchez de Rojas MI, Medina C (2017) Mineralogical study of granite waste in a pozzolan/Ca(OH)2 system: influence of the activation process. Appl Clay Sci 135:362–371

    Article  Google Scholar 

  56. Hewlett PC (ed) (1998) Lea's chemistry of cement and concrete, 4th edn. Elsevier, Oxford, UK

  57. Medina C, Sáez del Bosque IF, Asensio E, Frías M, Sánchez de Rojas MI (2016) New additions for eco-efficient cement design. Impact on calorimetric behaviour and comparison of test methods. Mater Struct 49:4595–4607

    Article  Google Scholar 

  58. Nakanishi EY, Frías M, Martínez-Ramírez S, Santos SF, Rodrigues MS, Rodríguez O, Savastano H (2014) Characterization and properties of elephant grass ashes as supplementary cementing material in pozzolan/Ca(OH)2 pastes. Constr Build Mater 73:391–398

    Article  Google Scholar 

  59. Vigil De La Villa R, Fernández R, Rodríguez O, García R, Villar-Cociña E, Frías M (2013) Evolution of the pozzolanic activity of a thermally treated zeolite. J Mater Sci 48:3213–3224

    Article  Google Scholar 

  60. Liebig E, Althaus E (1998) Pozzolanic activity of volcanic tuff and suevite: effects of calcination. Cem Concr Res 28:567–575

    Article  Google Scholar 

  61. He C, Makovicky E, Osbæck B (1994) Thermal stability and pozzolanic activity of calcined kaolin. Appl Clay Sci 9:165–187

    Article  Google Scholar 

  62. He C, Makovicky E, Osbæck B (1995) Thermal stability and pozzolanic activity of calcined illite. Appl Clay Sci 9:337–354

    Article  Google Scholar 

  63. Sasaki K, Masuda T, Ishida H, Mitsuda T (1997) Synthesis of calcium silicate hydrate with Ca/Si = 2 by mechanochemical treatment. J Am Ceram Soc 80:472–476

    Article  Google Scholar 

  64. Frı́as M, Cabrera J (2001) Influence of MK on the reaction kinetics in MK/lime and MK-blended cement systems at 20 °C. Cem Concr Res 31:519–527

    Article  Google Scholar 

  65. Moropoulou A, Bakolas A, Aggelakopoulou E (2004) Evaluation of pozzolanic activity of natural and artificial pozzolans by thermal analysis. Thermochim Acta 420:135–140

    Article  Google Scholar 

  66. Jamil M, Kaish ABMA, Raman SN, Zain MFM (2013) Pozzolanic contribution of rice husk ash in cementitious system. Constr Build Mater 47:588–593

    Article  Google Scholar 

  67. Arsenović M, Pezo L, Mančić L, Radojević Z (2014) Thermal and mineralogical characterization of loess heavy clays for potential use in brick industry. Thermochim Acta 580:38–45

    Article  Google Scholar 

  68. Hatakeyama T, Liu Z (1998) In: Sons JW (ed) Handbook of thermal analysis. Chichester, England

  69. Ramachandran VS, Paroli RM, Beaudoin JJ, Delgado AH (2002) Handbook of thermal analysis of construction materials. William Andrew Publishing, Norwich, NY

    Google Scholar 

  70. Shaw S, Henderson CMB, Komanschek BU (2000) Dehydration/recrystallization mechanisms, energetics, and kinetics of hydrated calcium silicate minerals: an in situ TGA/DSC and synchrotron radiation SAXS/WAXS study. Chem Geol 167:141–159

    Article  Google Scholar 

  71. Ibañez A, Sandoval F (1993) La Wollastonita: propiedades, síntesis y aplicaciones cerámicas. Bol Soc Esp Ceram Vidr 32:349–361

    Google Scholar 

  72. Klimesch DS, Ray AS (2002) Advances in cement technology, chaper 16: the use of thermal analysis in relation to hydrothermally treated CaO–SiO2–H2O and CaO–Al2O3–SiO2–H2O systems, 2nd edn. Indian, New Delhi

  73. Diamond S (1976) Cement paste microestructure: an overview at several levels. In: Sleffield (ed.) 7th Congress Hydraulic Cement pastes: their structure and properties

  74. He Y, Lu L, Struble L, Rapp J, Mondal P, Hu S (2014) Effect of calcium–silicon ratio on microstructure and nanostructure of calcium silicate hydrate synthesized by reaction of fumed silica and calcium oxide at room temperature. Mater Struct 47:311–322

    Article  Google Scholar 

  75. Taylor HFW (1950) Hydrated calcium silicates. Part I. Compound formation at ordinary temperatures. J Chem Soc (Resumed) 3682–3690

  76. Taylor HFW (1997) Cement, 2nd edn. Thomas Telford Publishing, London

    Google Scholar 

Download references

Acknowledgements

This study was funded by the Spanish Ministry of Science and Innovation under Projects BIA 2013-48876-C3-1-R, BIA 2013-48876-C3-2-R and BIA2016-76643-C3-1-R, as well as by the Government of Extremadura and the European Regional Development Fund (ERDF) under Grant GR 15064 awarded to the MATERIA research group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Medina.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medina, J.M., Sáez del Bosque, I.F., Frías, M. et al. Characterisation and valorisation of biomass waste as a possible addition in eco-cement design. Mater Struct 50, 207 (2017). https://doi.org/10.1617/s11527-017-1076-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-017-1076-9

Keywords

Navigation