Skip to main content
Log in

Bonding strength test method assessment for Cross-Laminated Timber Derived Stressed-Skin Panels (CLT SSP)

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Different methods, including bending tests and small and medium size shear tests, were used to assess the skin to stringer glue line shear strength of Radiata Pine Cross-Laminated Timber Derived Stressed-Skin Panels (CLT SSP). Bending test shear strengths were estimated using the mechanically jointed beam theory (gamma method) for Cross-Laminated Timber (CLT) panels with modifications in the layers’ effective widths, and then compared with results from the small and medium size shear tests. Small and medium size shear tests proved to be possible methods for assessing bonding strength for factory production control. The small shear tests provided lower strength values and higher scatter results than those gathered from the medium size tests. The mean shear strength results obtained from bending tests were inferior to the values obtained from the small and medium size specimens. The bending tests proved necessary for assessing the mechanical behaviour of CLT SSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. APA (2014) Plywood design specification. Supplement 3–12, design and fabrication of plywood stressed-skin panels. Form No. U813M. Tacoma, Washington, USA

  2. Drawsky RH (1960) Stressed-skin panel tests. Laboratory Report No. 82. Douglas Fir Plywood Association (DFPA). Tacoma, Washington, USA

  3. Raadschelders JGM, Blass HJ (1995) Stressed skin panels. STEP 1. Timber engineering. Basis of design, material properties, structural components and joints. Lecture B10, Centrum Hout, Netherlands

  4. Heyer OC, Blomquist RF (1964) Stressed-skin panel performance after twenty five years of service. U.S. Forest Service Research Paper FPL 18, Forest Product Laboratory, U.S Department of Agriculture, Forest Service. Madison, Wisconsin, USA

  5. Möler K, Abdel-Sayed G, Ehlbeck J (1963) Zur berechnung doppelschaliger, geleimter Tafelelemente. Holz als Roh - und Werkstoff 21:328–333

    Article  Google Scholar 

  6. Kuenzi EW, Zahn JJ (1975) Stressed-skin panels deflections and stresses. USDA Forest Service Research Paper FPL 251. Forest Product Laboratory, U.S. Department of Agriculture, Forest Service. Madison, Wisconsin, USA

  7. EOTA (2000) TR 002—technical report no. 2. Test methods for light composite wood-based beams and columns. European Organisation for Technical Assessment—EOTA, Brussels, Belgium

  8. EOTA (2004) ETAG 019, guideline for European technical approval of pre-fabricated wood-based load-bearing stressed skin panels. European Organisation for Technical Assessment, EOTA, Brussels, Belgium

  9. EOTA (2005) TR019—technical report no. 19. Calculation models for prefabricated wood-based load-bearing stressed skin panels for use in roofs. European Organisation for Technical Assessment, EOTA, Brussels, Belgium

  10. EN 1995-1-1 (2004/AC: 2006/A1: 2008/A2: 2014) Eurocode 5. Design of timber structures. Part 1-1: general. Common rules and rules for building. European Committee for Standarization, CEN, Brussels, Belgium

  11. Gagnon S, Popovski M (2011) CLT handbook, Chapter 3—structural design of cross-laminated timber elements. FP innovations Special Publication SP-528E. Quebec, Canada

  12. Blass H, Fellmoser P (2004) Design of solid wood panels with cross layers. In: Proceedings of the 8th world conference on timber engineering (WCTE), vol 2, Lahti, Finland, pp 543–548

  13. Kreuzinger H (1999) Platten, Scheiben und Schalen – ein Berechnungsmodell für gängige statikprogramme. Bauen mit holz 1:34–39

    Google Scholar 

  14. Christovasilis IP, Brunetti M, Follesa M, Nocetti M, Vassallo D (2016) Evaluation of the mechanical properties of cross laminated timber with elementary beam theories. Constr Build Mater 122:202–213

    Article  Google Scholar 

  15. EN 16351 (2015) Timber structures—cross laminated timber—requirements. European Committee for Standarization, CEN, Brussels, Belgium

    Google Scholar 

  16. EN 14080 (2013) Timber structures—glued laminated timber and glued solid timber—requirements. European Committee for Standarization, CEN, Brussels, Belgium

    Google Scholar 

  17. Denzler JK, Glos P (2007) Determination of shear strength values according to EN 408. Mater Struct 40:79–86

    Article  Google Scholar 

  18. UNE 56544 (2011) Clasificación visual de la madera aserrada para uso estructural. Madera de Coníferas (Visual grading for structural sawn timber. Coniferous timber). Asociación Española de Normalización y Certificación, AENOR, Madrid, Spain

    Google Scholar 

  19. EN 1912 (2012) Structural timber. Strength classes. Assignment of visual grades and species. European Committee for Standarization, CEN, Brussels, Belgium

    Google Scholar 

  20. EN 15425 (2008) Adhesives—one component polyurethane for load bearing timber structures—classification and performance requirements. European Committee for Standarization, CEN, Brussels, Belgium

    Google Scholar 

  21. Zanuttini R, Cremonini C (2002) Optimization of the test method for determining the bonding quality of core plywood (blockboard). Mater Struct 35:126–132

    Article  Google Scholar 

  22. EN 13183-2 (2002) Moisture content of a piece of sawn timber—part 2: estimation by electrical resistance method. European Committee for Standarization, CEN, Brussels, Belgium

    Google Scholar 

  23. EN 13183-2 (2002/AC:2003) Moisture content of a piece of sawn timber—part 2: estimation by electrical resistance method. European Committee for Standarization, CEN, Brussels, Belgium

    Google Scholar 

  24. INIA, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (1991) Propiedades y Tecnología de la Madera de Pino Radiata del PaísVasco. Monografías INIA núm. 80, INIA

  25. EN 14358 (2016) Timber structures—calculation and verification of characteristic values. European Committee for Standarization, CEN, Brussels, Belgium

    Google Scholar 

  26. EN 338 (2016) Structural timber. Strength classes. European Committee for Standarization, CEN, Brussels, Belgium

    Google Scholar 

  27. Forest Research Institute (1991) Properties and uses of New Zealand Radiata Pine, volume one—wood properties. Section 6.4 and Section 8.3. New Zealand Ministry of Forestry, Forest Research Institute

  28. Forest Products Laboratory (2010) Wood handbook: wood as an engineering material, chap. 5. USDA Forest Service, Madison

    Google Scholar 

  29. Gaspar F, Cruz H, Gomes A (2008) Evaluation of glued laminated timber structures—core extraction and shear testing. In: Proceedings of the world conference on timber engineering (WCTE), Miyazaki, Japan, pp 255–262

  30. Soltis LA, Rammer DM (1994) Shear strength of unchecked glued laminated timber beams. For Prod J 44(1):51–57

    Google Scholar 

  31. Steiger R, Gehri E, Richter K (2010) Quality control of glulam: shear testing of bond lines. Eur J Wood Prod 68:243–256

    Article  Google Scholar 

  32. Ido H, Nagao H, Kato H (2010) Evaluation of shear strength of timber with full scale block shear method. In: Proceedings of the world conference on timber engineering (WCTE), Riva del Garda, Italy, Paper 307, pp 1–8

  33. Betti M, Brunetti M, Lauriola MP, Nocetti M, Ravalli F, Pizzo B (2016) Comparison of newly proposed test methods to evaluate the bonding quality of Cross-Laminated Timber (CLT) panels by means of experimental data and finite element (FE) analysis. Constr Build Mater 125:952–963

    Article  Google Scholar 

  34. Yeh B, Gagnon S, Williamson T, Pirvu C (2012) The cross-laminated timber standard in North America. In: Proceedings of the world conference on timber engineering (WCTE), Auckland, New Zealand, pp 181–182

  35. Steiger R, Arnold M, Risi W (2014) Integrity check of structural softwood glue lines: correspondence between delamination and block shear tests. Eur J Wood Prod 72:735–748

    Article  Google Scholar 

Download references

Acknowledgements

AITIM, Madrid, Spain (Technical Research Association for Wood Industries). CIFOR-INIA, Madrid, Spain (Timber Laboratory, National Agricultural Research Institute). Timber Research Group, Universidad Politécnica de Madrid, ayudas líneas de I + D programa de creación y consolidación de Grupos de Investigación Universidad Politécnica de Madrid, 2016. The panels were supplied free of charge by EGOIN SA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Luengo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luengo, E., Hermoso, E., Cabrero, J.C. et al. Bonding strength test method assessment for Cross-Laminated Timber Derived Stressed-Skin Panels (CLT SSP). Mater Struct 50, 204 (2017). https://doi.org/10.1617/s11527-017-1069-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-017-1069-8

Keywords

Navigation