Procedure to determine the impact of the surface film resistance on the hygric properties of composite clay/fibre plasters

Abstract

The experimental determination of dynamic mass transfer properties of porous materials such as eco-efficient clay plasters is greatly influenced by the convective conditions at the surface of the material during the test. The measurement of the intrinsic vapour permeability of highly porous materials has shown to present wide discrepancies when the surface film resistance is not known. Therefore, a proper assessment of the hygric properties of clay plasters requires the determination of such resistance to vapour flow. An adapted experimental procedure was used to determine intrinsic water vapour permeability taking into account the influence of the surface film resistance. The moisture buffering test was used to measure dynamic exchange behaviour. The results gave evidence on the thickness of the active layer in the material and the impact of surface resistance on the exchange behaviour. A 1D mass transfer model was used to verify the validity of corrected vapour permeability by the surface film resistance and discuss its nature and influence on dynamic results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Abbreviations

ρ d :

Dry density (kg/m3)

ϕ :

Porosity (−)

ξ :

Moisture capacity (kg/m3)

δ p :

Apparent water vapour permeability [kg/(m s Pa)]

\(\delta_{p}^{r}\) :

Real water vapour permeability [kg/(m s Pa)]

\(\delta_{p}^{ISO}\) :

“ISO Correction” water vapour permeability [kg/(m s Pa)]

δ a :

Water vapour permeability of air [kg/(m s Pa)]

μ :

Water vapour resistance factor (−)

D p :

Liquid permeability

\(p_{v}^{sat}\) :

Saturation water vapour pressure (Pa)

G :

Total moisture flow rate (kg/s)

A :

Area of the specimen (m2)

β :

Water vapour surface transfer coefficient [kg/(m2 s Pa)]

d :

Thickness of the material (m)

d a :

Thickness of the air layer in the cup (m)

u :

Water content (kg/kg)

w :

Water content (kg/m3)

φ :

Relative humidity (−)

Z s :

External surface film resistance ((m2 s Pa)/kg)

Z Int :

Interior air layer resistance ((m2 s Pa)/kg)

References

  1. 1.

    Eshoj B, Padfield T (1993) The use of porous building materials to provide a stable relative humidity. In: Preprints of the ICOM-CC conference, James and James, pp 605–609

  2. 2.

    Padfield T (1998) The role of absorbent building materials in moderating changes of relative humidity, Ph.D. thesis, The Technical University of Denmark

  3. 3.

    Hall M, Allinson D (2009) Analysis of the hygrothermal functional properties of stabilised rammed earth materials. Build Environ 44:1935–1942

    Article  Google Scholar 

  4. 4.

    Allinson D, Hall M (2012) Humidity buffering using stabilised rammed earth materials. Constr Mater Proc Inst Civ Eng 165:335–344

    Article  Google Scholar 

  5. 5.

    Minke G (2012) Building with earth: design and technology of a sustainable architecture. Birkhäuser Architecture, Basel

    Google Scholar 

  6. 6.

    Melià P, Ruggieri G, Sabbadini S, Dotelli G (2014) Environmental impacts of natural and conventional building materials: a case study on earth plasters. J Clean Prod 80:179–186. doi:10.1016/j.jclepro.2014.05.073

    Article  Google Scholar 

  7. 7.

    McGregor F, Heath A, Fodde E, Shea A (2014a) Conditions affecting the moisture buffering measurement performed on compressed earth blocks. Build Environ 75:11–18

    Article  Google Scholar 

  8. 8.

    McGregor F, Heath A, Shea A, Lawrence M (2014b) Moisture buffering capacity of unfired clay masonry. Build Environ 82:599–607

    Article  Google Scholar 

  9. 9.

    Yu S, Bomberg M, Zhang X (2012) Integrated methodology for evaluation of energy performance of the building enclosures: part 4-material characterization for input to hygrothermal models. J Build Phys 35:194–212. doi:10.1177/1744259111420071

    Article  Google Scholar 

  10. 10.

    Yu S, Bomberg M, Zhang X (2012) Integrated methodology for evaluation of energy performance of the building enclosures: part 5-application of the proposed hygrothermal characterization. J Build Phys 36:178–197. doi:10.1177/1744259111420071

    Article  Google Scholar 

  11. 11.

    Roels S, Carmeliet J, Hens H, Adan O, Brocken H, Cerny R, Pavlik Z, Hall C, Kumaran K, Pel L (2004) Interlaboratory comparison of hygric properties of porous building materials. J Therm Envel Build Sci 27:307–325

    Article  Google Scholar 

  12. 12.

    Woloszyn M, Grillet A-C, Soudani L, Morel J, Fabbri A (2015) Potential of existing whole-building simulation tools to assess hygrothermal performance of rammed earth construction. In: Ciancio D, Beckett C (eds) Rammed earth construction: cutting-edge research on traditional and modern rammed earth. CRC Press, Perth, p 185

    Google Scholar 

  13. 13.

    Soudani L, Fabbri A, Morel J-C, Woloszyn M, Chabriac P-A (2016) Assessment of the validity of some common assumptions in hygrothermal modelling of earth based materials. Energy Build 16:498–511

    Article  Google Scholar 

  14. 14.

    Feng C, Janssen H, Feng Y, Meng Q (2015) Hygric properties of porous building materials: analysis of measurement repeatability and reproducibility. Build Environ 85:160–172. doi:10.1016/j.buildenv.2014.11.036

    Article  Google Scholar 

  15. 15.

    Feng C, Meng Q, Feng Y, Janssen H (2015) Influence of pre-conditioning methods on the cup test results. Energy Procedia 78:1383–1388. doi:10.1016/j.egypro.2015.11.158

    Article  Google Scholar 

  16. 16.

    Vololonirina O, Perrin B (2016) Inquiries into the measurement of vapour permeability of permeable materials. Constr Build Mater 102:338–348. doi:10.1016/j.conbuildmat.2015.10.126

    Article  Google Scholar 

  17. 17.

    Rojat F, Olivier M, Mesbah A, Xiao B (215) Mechanical characterization of natural fibre-reinforced earth plasters. In: ICBBM 2015—first international conference on bio-based building materials, At Clermont-Ferrand, France, pp 64–71

  18. 18.

    Hamard E, Morel J-C, Salgado F, Marcom A, Meunier N (2013) A procedure to assess the suitability of plaster to protect vernacular earthen architecture. J Cult Herit 14:109–115. doi:10.1016/j.culher.2012.04.005

    Article  Google Scholar 

  19. 19.

    ISO-12571 (2013) Hygrothermal performance of building materials and products. Determination of hygroscopic sorption properties. ISO 12571:2013. ISO, Geneva, Switzerland

  20. 20.

    ISO-12572 (2001) Determination of water vapour transmission properties. ISO 12572:2001. ISO, Geneva, Switzerland

  21. 21.

    Svennberg K (2006) Moisture buffering in the indoor environment, Ph.D. thesis, Building Physics, LTH, Lund University

  22. 22.

    Rode C, Peuhkuri RH, Mortensen LH, Hansen KK, Time B, Gustavsen A, Ojanen T, Ahonen J, Svennberg K, Arfvidsson J (2005) Moisture buffering of building materials, BYG·DTU R-126. Technical University of Denmark, Department of Civil Engineering

    Google Scholar 

  23. 23.

    Dubois S, McGregor F, Evrard A, Heath A, Lebeau F (2014) An inverse modelling approach to estimate the hygric parameters of clay-based masonry during a Moisture Buffer Value test. Build Environ 81:192–203

    Article  Google Scholar 

  24. 24.

    Osselin F, Fabbri A, Fen-Chong T, Pereira JM, Lassin A, Dangla P (2015) Experimental investigation of the influence of supercritical state on the relative permeability of Vosges sandstone. Comptes Rendus Mecanique 343:495–502. doi:10.1016/j.crme.2015.06.009

    Article  Google Scholar 

  25. 25.

    Rouquerol F, Rouquerol J, Sing KSW (1999) Adsorption by powders and porous solids: principles, methodology and applications. Academic Press, Cambridge

    Google Scholar 

  26. 26.

    Kwiatkowski J, Woloszyn M, Roux JJ (2009) Modelling of hysteresis influence on mass transfer in building materials. Build Environ 44:633–642. doi:10.1016/j.buildenv.2008.05.006

    Article  Google Scholar 

  27. 27.

    Künzel HM (1995) Simultaneous heat and moisture transport in building components, one-and two-dimensional calculation using simple parameters. IRB-Verlag, Stuttgart

    Google Scholar 

  28. 28.

    Vololonirina O, Coutand M, Perrin B (2014) Characterization of hygrothermal properties of wood-based products—impact of moisture content and temperature. Constr Build Mater 63:223–233. doi:10.1016/j.conbuildmat.2014.04.014

    Article  Google Scholar 

  29. 29.

    Wadsö L (1993) Surface mass transfer coefficients for wood. Dry Technol 11:1227–1249

    Article  Google Scholar 

  30. 30.

    Mortensen LH, Peuhkuri R, Rode C (2005) Full scale tests of moisture buffer capacity of wall materials. In: 7th Nordic symposium on building physics, Reykjavik, pp 662–669

  31. 31.

    Medjelekh D, Ulmet L, Gouny F, Fouchal F, Nait-ali B, Maillard P, Dubois F (2016) Characterization of the coupled hygrothermal behavior of unfired clay masonries: numerical and experimental aspects. Build Environ. doi:10.1016/j.buildenv.2016.09.037

  32. 32.

    Roels S, Janssen H (2006) A comparison of the Nordtest and Japanese test methods for the moisture buffering performance of building materials. J Build Phys 30:137–161

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n. PCOFUND-GA-2013-609102, through the PRESTIGE programme coordinated by Campus France. The authors wish to thank the French National Research Agency - France (ANR) for funding project BIOTERRA - ANR - 13 - VBDU - 0005 Villes et Bâtiments Durables.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fionn McGregor.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McGregor, F., Fabbri, A., Ferreira, J. et al. Procedure to determine the impact of the surface film resistance on the hygric properties of composite clay/fibre plasters. Mater Struct 50, 193 (2017). https://doi.org/10.1617/s11527-017-1061-3

Download citation

Keywords

  • Surface film resistance
  • Vapour permeability
  • Moisture buffering
  • Clay
  • Biobased
  • Plasters