Skip to main content
Log in

Composition design and performance of alkali-activated cements

Materials and Structures Aims and scope Submit manuscript

Abstract

In the present work, the relationship between the composition of the SiO2–Al2O3–CaO precursor system and the setting time, microstructure and mechanical properties of the resulting alkali-activated cement (AAC) were investigated. The results showed that with the increase of metakaolin content and the modulus of activator solution, setting time of alkali-activated cements was prolonged. The compressive strength increased with the increase of CaO content to a certain extent, but had different trends as Si/Al ratio varied. Microstructural analyses revealed that CaO content had remarkable effects on the microstructure of AAC. In calcium-free system, the strength was dependent on the three-dimensional structure of N–A–S–H gels. As the CaO content increased gradually, the main activation product changed from N–A–S–H to C–(A)–S–H gel, resulting in a more compact structure. This investigation helps to build up a practical approach for the composition design of alkali-activated cements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Glukhovsky VD (1959) Soil silicates (Gruntosilikaty). USSR, Kiev

    Google Scholar 

  2. Glukhovsky VD (1965) Their properties, technology and manufacturing and fields of application, soild silicates. USSR, Kiev

    Google Scholar 

  3. Bernal SA, Provis JL (2014) Durability of alkali-activated materials: progress and perspectives. J Am Ceram Soc 97(4):997–1008

    Article  Google Scholar 

  4. Shi C, Roy DM, Krivenko PV (2006) Alkali-activated cements and concretes. Taylor and Francis, Abingdon

    Book  Google Scholar 

  5. Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, van Deventer JSJ (2007) Geopolymer technology: the current state of the art. J Mater Sci 42(9):2917–2933

    Article  Google Scholar 

  6. Sun P (2005) Fly ash based inorganic polymeric building material. Wayne State University, Detroit

    Google Scholar 

  7. Provis JL, van Deventer JSJ (2007) Geopolymerisation kinetics. 2. Reaction kinetic modelling. Chem Eng Sci 62(9):2318–2329

    Article  Google Scholar 

  8. Shi C, He F, Palomo A (2012) Classification and characteristics of alkali-activated cements. J Chin Ceram Soc 40(1):69–75

    Google Scholar 

  9. Puertas F, Palacios M, Manzano H, Dolado J, Rico A, Rodríguez J (2011) A model for the CASH gel formed in alkali-activated slag cements. J Eur Ceram Soc 31(12):2043–2056

    Article  Google Scholar 

  10. Palomo A, Grutzeck M, Blanco M (1999) Alkali-activated fly ashes: a cement for the future. Cem Concr Res 29(8):1323–1329

    Article  Google Scholar 

  11. Davidovits J (1994) Properties of geopolymer cements. In: First international conference on alkaline cements and concretes, Kiev, Ukraine

  12. Pacheco-Torgal F, Castro-Gomes J, Jalali S (2008) Alkali-activated binders: a review: part 1: historical background, terminology, reaction mechanisms and hydration products. Constr Build Mater 22(7):1305–1314

    Article  Google Scholar 

  13. Li C, Sun H, Li L (2010) A review: the comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cem Concr Res 40(9):1341–1349

    Article  Google Scholar 

  14. Yip CK, Lukey G, van Deventer JSJ (2005) The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem Concr Res 35(9):1688–1697

    Article  Google Scholar 

  15. Xu H, van Deventer JSJ (2000) The geopolymerisation of alumino-silicate minerals. Int J Miner Process 59(3):247–266

    Article  Google Scholar 

  16. Granizo ML, Alonso S, Blanco-Varela MT, Palomo A (2002) Alkaline activation of metakaolin: effect of calcium hydroxide in the products of reaction. J Am Ceram Soc 85(1):225–231

    Article  Google Scholar 

  17. Yip CK, Lukey GC, Provis JL, van Deventer JSJ (2008) Effect of calcium silicate sources on geopolymerisation. Cem Concr Res 38(4):554–564

    Article  Google Scholar 

  18. Provis JL, van Deventer JSJ (2013) Alkali activated materials: state-of-the-art report, RILEM TC 224-AAM. Springer, Berlin

    Google Scholar 

  19. Provis JL, Palomo A, Shi C (2015) Advances in understanding alkali-activated materials. Cem Concr Res 78:110–125

    Article  Google Scholar 

  20. Zhang Z, Yao X, Zhu H, Hua S, Chen Y (2009) Activating process of geopolymer source material: kaolinite. J Wuhan Univ Technol-Mat Sci Edit 24(1):132–136

    Article  Google Scholar 

  21. Lloyd RR, Provis JL, van Deventer JSJ (2009) Microscopy and microanalysis of inorganic polymer cements. 1: remnant fly ash particles. J Mater Sci 44(2):608–619

    Article  Google Scholar 

  22. Duxson P, Provis JL, Lukey GC, Mallicoat SW, Kriven WM, van Deventer JSJ (2005) Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf A Physicochem Eng Asp 269(1–3):47–58

    Article  Google Scholar 

  23. Wu H, Sun P (2007) New building materials from fly ash-based lightweight inorganic polymer. Constr Build Mater 21(21):211–217

    Article  Google Scholar 

  24. Fernández-Jiménez A, Palomo A (2005) Composition and microstructure of alkali activated fly ash binder: effect of the activator. Cem Concr Res 35(10):1984–1992

    Article  Google Scholar 

  25. Wang SD, Scrivener KL (1995) Hydration products of alkali activated slag cement. Cem Concr Res 25(3):561–571

    Article  Google Scholar 

  26. Richardson IG, Groves GW (1992) Microstructure and microanalysis of hardened cement pastes involving ground granulated blast-furnace slag. J Mater Sci 27(22):6204–6212

    Article  Google Scholar 

  27. García-Lodeiro I, Fernández-Jiménez A, Palomo A, Macphee DE (2010) Effect of calcium additions on N–A–S–H cementitious gels. J Am Ceram Soc 93(7):1934–1940

    Google Scholar 

  28. Palomo A, Blanco-Varela T, Alonso S, Granizo L (2003) NMR study of alkaline activated “calcium hydroxide-metakaolin” solid mixtures. In: The 11th international congress on the chemistry of cement (ICCC), Durban, South Africa

  29. Buchwald A, Tatarin R, Stephan D (2009) Reaction progress of alkaline-activated metakaolin-ground granulated blast furnace slag blends. J Mater Sci 44(20):5609–5617

    Article  Google Scholar 

  30. Yu P, Kirkpatrick RJ, Poe B, McMillan PF, Cong X (1999) Structure of calcium silicate hydrate (C–S–H): near-, Mid-, and Far-infrared spectroscopy. J Am Ceram Soc 82(3):742–748

    Article  Google Scholar 

  31. Ylmén R, Wadsö L, Panas I (2010) Insights into early hydration of Portland limestone cement from infrared spectroscopy and isothermal calorimetry. Cem Concr Res 40(10):1541–1546

    Article  Google Scholar 

  32. Shi C, Jiménez AF, Palomo A (2011) New cements for the 21st century: the pursuit of an alternative to Portland cement. Cem Concr Res 41(7):750–763

    Article  Google Scholar 

  33. Bernal SA, Rodríguez ED, Gutiérrez RMD, Provis JL, Delvasto S (2012) Activation of metakaolin/slag blends using alkaline solutions based on chemically modified silica fume and rice husk ash. Waste Biomass Valor 3(1):99–108

    Article  Google Scholar 

  34. Puertas F, Martíinez-Ramírez S, Alonso S, Vázquez T (2000) Alkali-activated fly ash/slag cements: strength behaviour and hydration products. Cem Concr Res 30(10):1625–1632

    Article  Google Scholar 

  35. Juan H, Yang C (2012) Influence of carbonation on microstructure of alkali-activated slag cement pastes. J Build Mater 15(1):126–130

    Google Scholar 

  36. Voll D, Lengauer C, Beran A, Schneider H (2001) Infrared band assignment and structural refinement of Al–Si, Al–Ge, and Ga–Ge mullites. Eur J Miner 13(3):591–604

    Article  Google Scholar 

  37. Zhang Z, Yao X, Zhu H (2010) Potential application of geopolymers as protection coatings for marine concrete: I. Basic properties. Appl Clay Sci 49(1–2):1–6

    Google Scholar 

  38. Cheng TW, Chiu JP (2003) Fire-resistant geopolymer produced by granulated blast furnace slag. Miner Eng 16(3):205–210

    Article  Google Scholar 

  39. Chen X (2008) The research of preparation, microstructure and properties evaluation of geopolymer. Zhengzhou University, Henan

    Google Scholar 

  40. Yusuf MO, Johari MAM, Ahmad ZA, Maslehuddin M (2014) Evolution of alkaline activated ground blast furnace slag–ultrafine palm oil fuel ash based concrete. Mater Des 55(6):387–393

    Article  Google Scholar 

  41. Chang JJ (2003) A study on the setting characteristics of sodium silicate-activated slag pastes. Cem Concr Res 33(7):1005–1011

    Article  Google Scholar 

  42. Nath P, Sarker PK (2014) Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr Build Mater 66(1):163–171

    Article  Google Scholar 

  43. Karakoç MB, Türkmen İ, Maraş MM, Kantarci F, Demirboğa R, Toprak MU (2014) Mechanical properties and setting time of ferrochrome slag based geopolymer paste and mortar. Constr Build Mater 72:283–292

    Article  Google Scholar 

  44. PQ (2006) Fundamentals of silicate chemistry. http://www.pqcorp.com/corporate/aboutpq.asp

  45. Panias D, Giannopoulou IP, Perraki T (2007) Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers. Colloids Surf A Physicochem Eng Asp 301(1–3):246–254

    Article  Google Scholar 

  46. Hajimohammadi A, Provis JL, van Deventer JSJ (2011) The effect of silica availability on the mechanism of geopolymerisation. Cem Concr Res 41(3):210–216

    Article  Google Scholar 

  47. Yip CK, Provis JL, Lukey GC, van Deventer JSJ (2008) Carbonate mineral addition to metakaolin-based geopolymers. Cem Concr Compos 30(10):979–985

    Article  Google Scholar 

  48. Myers RJ, Bernal SA, Gehman JD, van Deventer JSJ, Provis JL (2014) The role of Al in cross-linking of alkali-activated slag cements. J Am Ceram Soc 98(3):996–1004

    Article  Google Scholar 

  49. Phair JW, van Deventer JSJ (2002) Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers. Int J Miner Process 66(1–4):121–143

    Article  Google Scholar 

  50. Shi C, Day RL (1995) A calorimetric study of early hydration of alkali-slag cements. Cem Concr Res 25(6):1333–1346

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support of the Ministry of Housing and Urban–Rural Development of China under Project of No. 2015-K4-033 and the National Natural Science Foundation of China under Project of Nos. 51638008 and 51461135001. The participation of ZZ was supported by the Australian Research Council Project (DE170101070).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Caijun Shi or Qing Wang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Shi, C., Wang, Q. et al. Composition design and performance of alkali-activated cements. Mater Struct 50, 178 (2017). https://doi.org/10.1617/s11527-017-1048-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-017-1048-0

Keywords

Navigation