Skip to main content

Advertisement

Log in

Mechanical behaviour of hypercompacted earth for building construction

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This paper investigates the mechanical behaviour of a hypercompacted unstabilized earth material manufactured by compressing a moist soil to very high pressures up to 100 MPa. The hypercompaction procedure increases material density, which in turn improves mechanical characteristics. Samples were manufactured at the scale of both small cylinders and masonry bricks. The effect of ambient humidity on the mechanical characteristics of the material was investigated at the scale of cylindrical samples, showing that both strength and stiffness are sensitive to environmental conditions and tend to increase as ambient humidity reduces. The strength of the bricks was instead investigated under laboratory ambient conditions by using different experimental configurations to assess the influence of sample slenderness and friction confinement. Additional tests were also performed to evaluate the influence of mortar joints and compaction-induced anisotropy. Overall, the hypercompacted earth material exhibits mechanical characteristics that are comparable with those of traditional building materials, such as fired bricks, concrete blocks or stabilized compressed earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Morel JC, Mesbah A, Oggero M, Walker P (2001) Building houses with local materials: means to drastically reduce the environmental impact of construction. Build Environ 36(10):1119–1126

    Article  Google Scholar 

  2. Allinson D, Hall M (2010) Hygrothermal analysis of a stabilised rammed earth test building in the UK. Energy Build 42(6):845–852

    Article  Google Scholar 

  3. Pacheco-Torgal F, Jalali S (2012) Earth construction: lessons from the past for future eco-efficient construction. Constr Build Mater 29:512–519

    Article  Google Scholar 

  4. McGregor F, Heath A, Fodde E, Shea A (2014) Conditions affecting the moisture buffering measurement performed on compressed earth blocks. Build Environ 75:11–18

    Article  Google Scholar 

  5. Aubert JE, Maillard P, Morel JC, Al Rafii M (2016) Towards a simple compressive strength test for earth bricks? Mater Struct 49(5):1641–1654

    Article  Google Scholar 

  6. Dierks K, Ziegert C (2002) Neue Untersuchungen zum Materialverhaltenvon Stampflehm. In: Steingass, P.: moderner lehmbau 2002. Tagungsband, Fraunhofer IRB

  7. Beckett CTS, Augarde CE (2012) The effect of humidity and temperature on the compressive strength of rammed earth. In: Proceedings of the 2nd European conference on unsaturated soils, pp 287–292

  8. Champiré F, Fabbri A, Morel JC, Wong H, McGregor F (2016) Impact of relative humidity on the mechanical behavior of compacted earth as a building material. Constr Build Mater 110:70–78

    Article  Google Scholar 

  9. Bui QB, Morel JC, Hans S, Walker P (2014) Effect of moisture content on the mechanical characteristics of rammed earth. Constr Build Mater 54:163–169

    Article  Google Scholar 

  10. Olivier M, Mesbah A (1986) Le matériau terre: Essai de compactage statique pour la fabrication de briques de terre compressées. Bull Liaison Lab Ponts et Chaussées 146:37–43

    Google Scholar 

  11. Venkatarama-Reddy BV, Jagadish KS (1993) The static compaction of soils. Geotechnique 43(2):337–341

    Article  Google Scholar 

  12. Attom MF (1997) The effect of compactive energy level on some soil properties. Appl Clay Sci 12(1):61–72

    Article  Google Scholar 

  13. Mesbah A, Morel JC, Olivier M (1999) Clayey soil behaviour under static compaction test. Mater Struct 32(223):687–694

    Article  Google Scholar 

  14. Kouakou CH, Morel JC (2009) Strength and elasto-plastic properties of non-industrial building materials manufactured with clay as a natural binder. Appl Clay Sci 44(1):27–34

    Article  Google Scholar 

  15. AFNOR (1995) XP P 94-041. Soils: investigation and testing—granulometric description—wet sieving method. Assosciation Française de Normalisation (AFNOR), Paris La Défense Cedex

  16. AFNOR (1992) NF P 94-057. Soils: investigation and testing—granulometric analysis—hydrometer method. Assosciation Française de Normalisation (AFNOR), Paris La Défense Cedex

  17. AFNOR (1993) NF P 94-051. Soils: investigation and testing—determination of Atterberg’s limits—liquid limit test using Casagrande apparatus—plastic limit test on rolled thread. Assosciation Française de Normalisation (AFNOR), Paris La Défense Cedex

  18. Bruno AW, Gallipoli D, Perlot C, Mendes J, Salmon N (2015) Mechanical properties of unstabilized earth compressed at high pressures. In: Proceedings of the 1st international conference on bio-based building materials, Clermont-Ferrand, France, 21–24 June 2015, e-ISBN PRO99: 978-2-35158-154-4

  19. Skempton AW (1953) The colloidal “activity” of clays. Sel Pap Soil Mech 106–118. doi:10.1680/sposm.02050.0009

  20. AFNOR (1991) NF P 94-054; soils: investigation and testing—determination of particle density—pycnometer method. Assosciation Française de Normalisation (AFNOR), Paris La Défense Cedex

  21. Taylor DW, Merchant W (1940) A theory of clay consolidation accounting for secondary compression. J Math Phys 19(1):167–185

    Article  Google Scholar 

  22. AFNOR (1999) NF P 94-093. Soil: investigation and testing—Determination of the compaction charcateristics of a soil—Standard Proctor Test—Modified Proctor Test. Assosciation Française de Normalisation (AFNOR), Paris La Défense Cedex

  23. Fisher RA (1926) On the capillary forces in an ideal soil; correction of formulae given by WB Haines. J Agric Sci 16(03):492–505

    Article  Google Scholar 

  24. Aubert JE, Fabbri A, Morel JC, Maillard P (2013) An earth block with a compressive strength higher than 45 MPa! Constr Build Mater 47:366–369

    Article  Google Scholar 

  25. Ciancio D, Gibbings J (2012) Experimental investigation on the compressive strength of cored and molded cement-stabilized rammed earth samples. Constr Build Mater 28(1):294–304

    Article  Google Scholar 

  26. ASTM C270 (2014) Standard specification for mortar for unit masonry. American Society for Testing and Materials International, West Conshohocken, PA, USA

    Google Scholar 

  27. Guettala A, Guenfoud M (1997) Béton de terre stabilisé: Propriétés physico-mécaniques et influence des types d’argiles. La technique moderne 89(1–2):21–26

    Google Scholar 

  28. Kariyawasam KKGKD, Jayasinghe C (2016) Cement stabilized rammed earth as a sustainable construction material. Constr Build Mater 105:519–527

    Article  Google Scholar 

  29. RILEM TC (1994) RILEM recommendations for the testing and use of constructions materials. In: RC 6 bond test for reinforcement steel. 2. Pull-out test, 1983. E & FN SPON, London, UK, pp 218–220

  30. AFNOR (2006) NF EN 196-1. Methods of testing cement—part 1: determination of strength. Assosciation Française de Normalisation (AFNOR), Paris La Défense Cedex

Download references

Funding

This study was funded by the “Conseil régional d’Aquitaine” and the “Agglomération Côte Basque Adour” through the project MECAD “Matériaux Eco-renforcés pour la Construction et l’Aménagement Durable” (Dossier No. 20131101001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agostino Walter Bruno.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruno, A.W., Gallipoli, D., Perlot, C. et al. Mechanical behaviour of hypercompacted earth for building construction. Mater Struct 50, 160 (2017). https://doi.org/10.1617/s11527-017-1027-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-017-1027-5

Keywords

Navigation