Skip to main content
Log in

Drying and carbonation shrinkage of cement paste containing alkalis

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

In this work, shrinkage performance of ordinary portland cement (OPC) paste containing various alkali salts was characterized at two drying conditions, namely: nitrogen gas and air. The results show that incorporation of alkalis dramatically increases shrinkage magnitude, but reduces shrinkage kinetics of OPC, regardless of source and type of alkalis (e.g. Na+ or K+). The amount of alkalis bound in the solid hydrated phases, rather than the free alkalis remaining in the pore solution, is crucial in controlling the shrinkage performance of OPC. It is suggested that the alkali enrichment in OPC increases the visco-elastic/visco-plastic compliance (reduce creep modulus) of its solid skeleton under drying-induced internal stresses. This phenomenon is likely to be attributed to the alkalis binding in calcium–silicate–hydrate (C–S–H), which promotes the packing of C–S–H nanoparticles. Carbonation results in shrinkage (i.e. carbonation shrinkage) in plain OPC, but expansion in OPC with alkali enrichment. The overall volume change of OPC due to carbonation may be a result of competition between dissolution-induced shrinkage and crystallization-induced expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Juenger M, Winnefeld F, Provis J, Ideker J (2011) Advances in alternative cementitious binders. Cem Concr Res 41(12):1232–1243

    Article  Google Scholar 

  2. Thomas RJ, Ye H, Radlińska A, Peethamparan S (2016) Alkali-activated slag concrete: a closer look at sustainable alternatives to portland cement. Concr Int 38(1):33–38

    Google Scholar 

  3. Sant G, Kumar A, Patapy C, Le Saout G, Scrivener K (2012) The influence of sodium and potassium hydroxide on volume changes in cementitious materials. Cem Concr Res 42(11):1447–1455

    Article  Google Scholar 

  4. Beltzung F, Wittmann F, Holzer L (2001) Influence of composition of pore solution on drying shrinkage. In: Ulm F-J, Bazant ZP, Wittmann FH (eds) Creep, shrinkage and durability mechanics of concrete and other quasi-brittle materials. Elsevier Science Ltd, Amsterdam

    Google Scholar 

  5. Blaine RA (1968) Statistical study of the effects of trace elements on the properties of Portland cement. In: Proc. 5th Int’l symp. chemistry of cement. Tokyo, pp 86–91

  6. Beltzung F, Wittmann F, Wan X, Sun W, van Breugel K, Miao C, Ye G, Chen H (2008) Influence of alkali content on creep and shrinkage of cement-based materials. In: International conference on microstructure related durability of cementitious composites. RILEM Publications, pp 905–915

  7. Jawed I, Skalny J (1978) Alkalies in cement: a review: II. Effects of alkalies on hydration and performance of Portland cement. Cem Concr Res 8(1):37–51

    Article  Google Scholar 

  8. Ye H, Radlińska A (2016) Quantitative analysis of phase assemblage and chemical shrinkage of alkali-activated slag. J Adv Concr Technol 14:245–260

    Article  Google Scholar 

  9. Juenger MCG, Jennings HM (2001) Effects of high alkalinity on cement pastes. ACI Mater J 98(3):251–255

    Google Scholar 

  10. He Z, Li Z (2005) Influence of alkali on restrained shrinkage behavior of cement-based materials. Cem Concr Res 35(3):457–463

    Article  Google Scholar 

  11. Maslehuddin M, Page C, Rasheeduzzafar (1996) Effect of temperature and salt contamination on carbonation of cements. J Mater Civ Eng 8(2):63–69

    Article  Google Scholar 

  12. Kobayashi K, Uno Y (1990) Influence of alkali on carbonation of concrete, part 2-influence of alkali in cement on rate of carbonation of concrete. Cem Concr Res 20(4):619–622

    Article  Google Scholar 

  13. Neville AM (1995) Properties of concrete, 4th ed. Pearson, Harlow

    Google Scholar 

  14. Verbeck GJ (1958) Carbonation of hydrated Portland cement. In: Committee C (ed)  Cement and Concrete, STP39460S. ASTM International, West Conshohocken, pp 17–36. https://doi.org/10.1520/STP39460S

  15. Powers TC (1900) A hypothesis on carbonation shrinkage, vol 4. Portland Cement Association

  16. En Ruiz-Agudo, Kudłacz K, Putnis CV, Putnis A, Rodriguez-Navarro C (2013) Dissolution and carbonation of portlandite [Ca (OH) 2] single crystals. Environ Sci Technol 47(19):11342–11349

    Article  Google Scholar 

  17. Chen JJ, Thomas JJ, Jennings HM (2006) Decalcification shrinkage of cement paste. Cem Concr Res 36(5):801–809

    Article  Google Scholar 

  18. Matsushita F, Aono Y, Shibata S (2004) Calcium silicate structure and carbonation shrinkage of a tobermorite-based material. Cem Concr Res 34(7):1251–1257

    Article  Google Scholar 

  19. Lodeiro IG, Macphee D, Palomo A, Fernández-Jiménez A (2009) Effect of alkalis on fresh C–S–H gels. FTIR analysis. Cem Concr Res 39(3):147–153

    Article  Google Scholar 

  20. Mendoza O, Giraldo C, Camargo SS, Tobón JI (2015) Structural and nano-mechanical properties of calcium silicate hydrate (CSH) formed from alite hydration in the presence of sodium and potassium hydroxide. Cem Concr Res 74:88–94

    Article  Google Scholar 

  21. Mota B, Matschei T, Scrivener K (2015) The influence of sodium salts and gypsum on alite hydration. Cem Concr Res 75:53–65

    Article  Google Scholar 

  22. Ye H, Radlińska A (2016) Shrinkage mechanisms of alkali-activated slag. Cem Concr Res 88:126–135

    Article  Google Scholar 

  23. Ye H, Cartwright C, Rajabipour F, Radlińska A (2017) Understanding the drying shrinkage performance of alkali-activated slag mortars. Cement Concr Compos 76:13–24

    Article  Google Scholar 

  24. Ye H, Cartwright C, Rajabipour F, Radlińska A (2014) Effect of drying rate on shrinkage of alkali-activated slag cements. In: 4th international conference on the durability of concrete structure (ICDCS). Purdue University, Indiana, pp 254–261

  25. Barneyback R, Diamond S (1981) Expression and analysis of pore fluids from hardened cement pastes and mortars. Cem Concr Res 11(2):279–285

    Article  Google Scholar 

  26. Glasser F, Kindness A, Stronach S (1999) Stability and solubility relationships in AFm phases: part I. Chloride, sulfate and hydroxide. Cem Concr Res 29(6):861–866

    Article  Google Scholar 

  27. Kumar A, Sant G, Patapy C, Gianocca C, Scrivener KL (2012) The influence of sodium and potassium hydroxide on alite hydration: experiments and simulations. Cem Concr Res 42(11):1513–1523

    Article  Google Scholar 

  28. Viallis H, Faucon P, Petit J-C, Nonat A (1999) Interaction between salts (NaCl, CsCl) and calcium silicate hydrates (CSH). J Phys Chem B 103(25):5212–5219

    Article  Google Scholar 

  29. Lothenbach B, Nonat A (2015) Calcium silicate hydrates: solid and liquid phase composition. Cem Concr Res 78:57–70

    Article  Google Scholar 

  30. Ye H, Radlińska A (2016) A review and comparative study of existing shrinkage prediction models for portland and non-portland cementitious materials. Adv Mater Sci Eng 2016(2016):2418219

    Google Scholar 

  31. Kovler K, Zhutovsky S (2006) Overview and future trends of shrinkage research. Mater Struct 39(9):827–847

    Article  Google Scholar 

  32. Lura P, Jensen OM, van Breugel K (2003) Autogenous shrinkage in high-performance cement paste: an evaluation of basic mechanisms. Cem Concr Res 33(2):223–232

    Article  Google Scholar 

  33. Grasley ZC, Leung CK (2011) Desiccation shrinkage of cementitious materials as an aging, poroviscoelastic response. Cem Concr Res 41(1):77–89

    Article  Google Scholar 

  34. Badmann R, Stockhausen N, Setzer MJ (1981) The statistical thickness and the chemical potential of adsorbed water films. J Colloid Interface Sci 82(2):534–542

    Article  Google Scholar 

  35. Wittmann F (1973) Interaction of hardened cement paste and water. J Am Ceram Soc 56(8):409–415

    Article  Google Scholar 

  36. Bentz DP, Garboczi EJ, Quenard DA (1998) Modelling drying shrinkage in reconstructed porous materials: application to porous Vycor glass. Modell Simul Mater Sci Eng 6(3):211

    Article  Google Scholar 

  37. Mackenzie J (1950) The elastic constants of a solid containing spherical holes. Proc Phys Soc Lond Sect B 63(1):2

    Article  MATH  Google Scholar 

  38. Bentz DP (2005) Curing with shrinkage-reducing admixtures. Concrete Int Detroit 27(10):55

    Google Scholar 

  39. Vlahinić I, Jennings HM, Thomas JJ (2009) A constitutive model for drying of a partially saturated porous material. Mech Mater 41(3):319–328

    Article  Google Scholar 

  40. Lura P, Lothenbach B, Miao C, Ye G, Chen H (2010) Influence of pore solution chemistryon shrinkage of cement paste. In: The 50-year teaching and research anniversary of prof sun wei on advances in civil engineering materials, pp 191–200

  41. Jennings HM (2000) A model for the microstructure of calcium silicate hydrate in cement paste. Cem Concr Res 30(1):101–116

    Article  Google Scholar 

  42. Ye H (2015) Creep mechanisms of calcium–silicate–hydrate: an overview of recent advances and challenges. Int J Concrete Struct Mater 9(4):453–462

    Article  Google Scholar 

  43. Thiery M, Villain G, Dangla P, Platret G (2007) Investigation of the carbonation front shape on cementitious materials: effects of the chemical kinetics. Cem Concr Res 37(7):1047–1058

    Article  Google Scholar 

  44. Houst Y (1989) Le retrait de carbonatation. Chantiers (Suisse) 20 (LTP-ARTICLE-2008-036):55-60

Download references

Acknowledgements

The authors would like to thank Prof. Farshad Rajabipour for his insightful thoughts and discussion regarding several topics discussed in this paper. The authors gratefully acknowledge the financial support from the US National Science Foundation (NSF) under Award CMMI #1265789. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailong Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, H., Radlińska, A. & Neves, J. Drying and carbonation shrinkage of cement paste containing alkalis. Mater Struct 50, 132 (2017). https://doi.org/10.1617/s11527-017-1006-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-017-1006-x

Keywords

Navigation