Skip to main content

Mix design approach for low-powder self-consolidating concrete: Eco-SCC—content optimization and performance

Abstract

Commitment to reducing the environmental impact of concrete construction is of great importance nowadays. In case of self-consolidating concrete (SCC), this is of critical significance given the high binder content of such concrete needed to ensure the required rheological properties. The present study proposes an appropriate design approach for producing SCC of low carbon footprint (Eco-SCC). The maximum powder content for an Eco-SCC mixture is set to 315 kg/m3. The design method is based on optimization of the volumetric proportions of sand and coarse aggregate according to an ideal particle gradation curve. The water content is adjusted to provide the necessary minimum paste volume to obtain self-consolidating properties. Silica fume, fly ash, and limestone fillers are used as powder materials along with a Type GU portland cement. The powder composition is determined according to rheological optimization of paste to reduce the water demand while satisfying mechanical properties, durability aspects, and environmental considerations. Such design method is found to be effective for obtaining Eco-SCC. Mixtures with total powder content ranging from 280 to 310 kg/m3 are shown to exhibit satisfactory workability characteristics and 28-day compressive strengths in the range of 25–30 MPa. The durability and drying shrinkage of the investigated mixtures are found to be adequate. The eco-efficiency of Eco-SCC mixtures is assessed and shown to be within the optimum area.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Yang K-H, Song J-K, Song K-I (2013) Assessment of CO2 reduction of alkali-activated concrete. J Clean Prod 39:265–272. doi:10.1016/j.jclepro.2012.08.001

    Article  Google Scholar 

  2. Turner LK, Collins FG (2013) Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete. Constr Build Mater 43:125–130. doi:10.1016/j.conbuildmat.2013.01.023

    Article  Google Scholar 

  3. Flatt RJ, Roussel N, Cheeseman CR (2012) Concrete: an eco material that needs to be improved. J Eur Ceram Soc 32:2787–2798. doi:10.1016/j.jeurceramsoc.2011.11.012

    Article  Google Scholar 

  4. Proske T, Hainer S, Rezvani M, Graubner C-A (2013) Eco-friendly concretes with reduced water and cement contents—mix design principles and laboratory tests. Cem Concr Res 51:38–46. doi:10.1016/j.cemconres.2013.04.011

    Article  Google Scholar 

  5. Damineli BL, Kemeid FM, Aguiar PS, John VM (2010) Measuring the eco-efficiency of cement use. Cem Concr Compos 32:555–562. doi:10.1016/j.cemconcomp.2010.07.009

    Article  Google Scholar 

  6. Habert G, Roussel N (2009) Study of two concrete mix-design strategies to reach carbon mitigation objectives. Cem Concr Compos 31:397–402. doi:10.1016/j.cemconcomp.2009.04.001

    Article  Google Scholar 

  7. Aïtcin P (2000) Cements of yesterday and today: concrete of tomorrow. Cem Concr Res 30:1349–1359

    Article  Google Scholar 

  8. Fennis SAAM (2010) Design of ecological concrete by particle packing optimization, Ph.D. Dissertation. Delft University of Technology, Netherlands

  9. Figueiras H, Nunes S, Coutinho JS, Figueiras J (2009) Combined effect of two sustainable technologies: Self-compacting concrete (SCC) and controlled permeability formwork (CPF). Constr Build Mater 23:2518–2526. doi:10.1016/j.conbuildmat.2009.02.035

    Article  Google Scholar 

  10. Khayat KH (1999) Workability, testing, and performance of self-consolidating concrete. ACI Mater J 96:346–354

    Google Scholar 

  11. Hunger M (2010) An integral design concept for ecological self-compacting concrete, Ph.D. Dissertation. Eindhoven University of Technology

  12. Brouwers HJH, Radix HJ (2005) Self-compacting concrete: theoretical and experimental study. Cem Concr Res 35:2116–2136. doi:10.1016/j.cemconres.2005.06.002

    Article  Google Scholar 

  13. Hüsken G, Brouwers HJH (2008) A new mix design concept for earth-moist concrete: a theoretical and experimental study. Cem Concr Res 38:1246–1259. doi:10.1016/j.cemconres.2008.04.002

    Article  Google Scholar 

  14. Funk JE, Dinger D (1994) Predictive process control of crowded particulate suspensions: applied to ceramic manufacturing, 1st edn. doi: 10.1007/978-1-4615-3118-0

  15. Ghezal A, Khayat KH (2002) Optimizing self-consolidating concrete with limestone filler by using statistical factorial design methods. ACI Mater J 99:264–272

    Google Scholar 

  16. Khayat KH, Ghezal A, Hadriche MS (1999) Factorial design model for proportioning self- consolidating concrete. Mater Struct 32:679–686. doi:10.1007/BF02481706

    Article  Google Scholar 

  17. Chen C, Habert G, Bouzidi Y et al (2010) LCA allocation procedure used as an incitative method for waste recycling: an application to mineral additions in concrete. Resour Conserv Recycl 54:1231–1240. doi:10.1016/j.resconrec.2010.04.001

    Article  Google Scholar 

  18. Grünewald S, de Schutter G (2016) Design considerations and sustainability of self-compacting concrete. In: Khayat KH (ed) SCC 2016—8th International RILEM symposium on self-compacting concrete. Suppl. Vol. Washington DC, pp 1023–1032

  19. Yang KH, Jung YB, Cho MS, Tae SH (2015) Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. J Clean Prod 103:774–783. doi:10.1016/j.jclepro.2014.03.018

    Article  Google Scholar 

  20. Mueller FV, Wallevik OH, Khayat KH (2014) Linking solid particle packing of Eco-SCC to material performance. Cem Concr Compos 54:117–125. doi:10.1016/j.cemconcomp.2014.04.001

    Article  Google Scholar 

  21. Wallevik OH, Nielsson I (1998) Self-compacting concrete—a rheological approach. In: International workshop on SCC. JSCE Concrete Engineering Series no. 30, Kochi, Japan, pp 136–159

  22. Fidjestol P, Wallevik OH, Nielsson I, Holton I (2003) Topic concrete: rationale, development and laboratory performance of an environmentally friendly concrete for piling applications. In: 3rd International Symposium on SCC. Rilem, Reykjavik, Iceland, pp 920–931

  23. Wallevik OH, Mueller FV, Hjartarson B, Kubens S (2009) The green alternative of self-compacting concrete, Eco-SCC. In: XVII IBAUSIL Weimar, vol 1, Germany, pp 1105–1116

  24. Mueller FV, Wallevik OH (2009) Effect of maximum aggregate size in air-entrained Eco-SCC. In: 2nd International symposium on design performance and use self-consolidating concrete SCC’. Rilem, Beijing, pp 664–673

  25. Wallevik OH, Mansour WI, Yazbeck FH, Kristjansson TI (2014) EcoCrete-Xtreme: extreme performance of a sustainable concrete. In: Wallevik OH, Bager DH, Hjartarson B, Wallevik JE (eds) Proceedings of international symposium on Eco-Crete. Reykjavik, Iceland, pp 3–10

  26. Mueller FV (2012) Design criteria for low binder Self-Compacting Concrete, Eco-SCC, Ph.D. Dissertation. Reykjavik University

  27. Esmaeilkhanian B, Diederich P, Khayat KH et al (2017) Influence of particle lattice effect on stability of suspensions: application to self-consolidating concrete. Mater Struct 50:39. doi:10.1617/s11527-016-0908-3

    Article  Google Scholar 

  28. Ferraris CF, Obla KH, Hill R (2001) The influence of mineral admixtures on the rheology of cement paste and concrete. Cem Concr Res 31:245–255. doi:10.1016/S0008-8846(00)00454-3

    Article  Google Scholar 

  29. Aïssoun BM (2011) Study of the influence of aggregate characteristics on the rheology of fluid concrete with adapted rheology, (in French), M.Sc. Thesis. Université de Sherbrooke

  30. de Larrard F (1999) Concrete mixture proportioning: a scientific approach. E & FN Spon, London

    Google Scholar 

  31. PCI TR-6-03 (2003) Interim Guidelines for the Use of Self-Consolidating Concrete in Precast/Prestressed Concrete Institute Member Plants

  32. BIBM, CEMBUREAU, ERMCO et al (2005) The European Guidelines for Self-Compacting Concrete—Specification, Production and Use

  33. Esmaeilkhanian B, Feys D, Khayat KH et al (2014) New test method to evaluate dynamic stability of self-consolidating concrete. ACI Mater J 111:299–307. doi:10.14359/51686573

    Google Scholar 

  34. Wallevik OH, Feys D, Wallevik JE, Khayat KH (2015) Avoiding inaccurate interpretations of rheological measurements for cement-based materials. Cem Concr Res 78:100–109. doi:10.1016/j.cemconres.2015.05.003

    Article  Google Scholar 

  35. Domone PLL (2006) Self-compacting concrete: an analysis of 11 years of case studies. Cem Concr Compos 28:197–208. doi:10.1016/j.cemconcomp.2005.10.003

    Article  Google Scholar 

  36. Roussel N, Nguyen TLH, Yazoghli O, Coussot P (2009) Passing ability of fresh concrete: a probabilistic approach. Cem Concr Res 39:227–232. doi:10.1016/j.cemconres.2008.11.009

    Article  Google Scholar 

  37. Ng IYT, Wong HHC, Kwan AKH (2006) Passing ability and segregation stability of self- consolidating concrete with different aggregate proportions. Mag Concr Res 58:447–457

    Article  Google Scholar 

  38. Mahaut F, Mok S, Chateau X et al (2008) Effect of coarse particle volume fraction on the yield stress and thixotropy of cementitious materials. Cem Concr Res 38:1276–1285. doi:10.1016/j.cemconres.2008.06.001

    Article  Google Scholar 

  39. Heirman G, Vandewalle L, Van Gemert D, Wallevik Ó (2008) Integration approach of the Couette inverse problem of powder type self-compacting concrete in a wide-gap concentric cylinder rheometer. J Nonnewton Fluid Mech 150:93–103. doi:10.1016/j.jnnfm.2007.10.003

    Article  MATH  Google Scholar 

  40. Ferraris CF, Gaidis JM (1992) Connection between the rheology of concrete and rheology of cement paste. ACI Mater J 88:388–393

    Google Scholar 

  41. Groen Beton (Green Concrete) 3.2 (2014) CUR Design Tool. http://www.sbrcurnet.nl/producten/rekentools/cur-ontwerptool-groen-beton-1

  42. Barbhuiya SA, Gbagbo JK, Russell MI, Basheer PAM (2009) Properties of fly ash concrete modified with hydrated lime and silica fume. Constr Build Mater 23:3233–3239. doi:10.1016/j.conbuildmat.2009.06.001

    Article  Google Scholar 

  43. Nochaiya T, Wongkeo W, Chaipanich A (2010) Utilization of fly ash with silica fume and properties of portland cement–fly ash–silica fume concrete. Fuel 89:768–774. doi:10.1016/j.fuel.2009.10.003

    Article  Google Scholar 

  44. Lachemi M, Hossain KMA, Lambros V, Bouzoubaâ N (2003) Development of cost-effective self-consolidating concrete incorporating fly ash, slag cement, or viscosity-modifying admixtures. ACI Mater J 100:419–425

    Google Scholar 

  45. Park CK, Noh MH, Park TH (2005) Rheological properties of cementitious materials containing mineral admixtures. Cem Concr Res 35:842–849. doi:10.1016/j.cemconres.2004.11.002

    Article  Google Scholar 

  46. Wallevik OH, Wallevik JE (2011) Rheology as a tool in concrete science: the use of rheographs and workability boxes. Cem Concr Res 41:1279–1288. doi:10.1016/j.cemconres.2011.01.009

    Article  Google Scholar 

  47. Hwang S-D, Khayat KH (2010) Effect of mix design on restrained shrinkage of self-consolidating concrete. Mater Struct 43:367–380. doi:10.1617/s11527-009-9495-x

    Article  Google Scholar 

  48. Şahmaran M, Lachemi M, Erdem TK, Yücel HE (2011) Use of spent foundry sand and fly ash for the development of green self-consolidating concrete. Mater Struct 44:1193–1204. doi:10.1617/s11527-010-9692-7

    Article  Google Scholar 

  49. Şahmaran M, Yaman İÖ, Tokyay M (2009) Transport and mechanical properties of self consolidating concrete with high volume fly ash. Cem Concr Compos 31:99–106. doi:10.1016/j.cemconcomp.2008.12.003

    Article  Google Scholar 

  50. Şahmaran M, Yaman İÖ, Tokyay M (2007) Development of high-volume low-lime and high-lime fly-ash-incorporated self-consolidating concrete. Mag Concr Res 59:97–106

    Article  Google Scholar 

  51. Silva P, de Brito J (2016) Experimental study of the mechanical properties and shrinkage of self-compacting concrete with binary and ternary mixes of fly ash and limestone filler. Eur J Environ Civ Eng 86:1–24. doi:10.1080/19648189.2015.1131200

    Google Scholar 

  52. Maslehuddin M, Saricimen H, Al-Mana AI (1987) Effect of fly ash addition on the corrosion resisting characteristics of concrete. ACI Mater J 84:42–50

    Google Scholar 

  53. Valcuende M, Marco E, Parra C, Serna P (2012) Influence of limestone filler and viscosity-modifying admixture on the shrinkage of self-compacting concrete. Cem Concr Res 42:583–592. doi:10.1016/j.cemconres.2012.01.001

    Article  Google Scholar 

  54. Zidol A (2014) Durability of concrete incorporating glass powder in aggressive environment, (in French), Ph.D. Dissertation. Université de Sherbrooke

  55. Association Française de Génie Civil (AFGC) (2004) Concrete design for a given service life of structures—durability indicators, (in French)

  56. Shane JD, Aldea CD, Bouxsein NF et al (1999) Microstructural and pore solution changes induced by the rapid chloride permeability test measured by impedance spectroscopy. Concr Sci Eng 1:110–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Esmaeilkhanian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Esmaeilkhanian, B., Khayat, K.H. & Wallevik, O.H. Mix design approach for low-powder self-consolidating concrete: Eco-SCC—content optimization and performance. Mater Struct 50, 124 (2017). https://doi.org/10.1617/s11527-017-0993-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-017-0993-y

Keywords

  • Durability
  • Ecological self-consolidating concrete
  • Mix design
  • Particle-size optimization
  • Workability