Yang K-H, Song J-K, Song K-I (2013) Assessment of CO2 reduction of alkali-activated concrete. J Clean Prod 39:265–272. doi:10.1016/j.jclepro.2012.08.001
Article
Google Scholar
Turner LK, Collins FG (2013) Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete. Constr Build Mater 43:125–130. doi:10.1016/j.conbuildmat.2013.01.023
Article
Google Scholar
Flatt RJ, Roussel N, Cheeseman CR (2012) Concrete: an eco material that needs to be improved. J Eur Ceram Soc 32:2787–2798. doi:10.1016/j.jeurceramsoc.2011.11.012
Article
Google Scholar
Proske T, Hainer S, Rezvani M, Graubner C-A (2013) Eco-friendly concretes with reduced water and cement contents—mix design principles and laboratory tests. Cem Concr Res 51:38–46. doi:10.1016/j.cemconres.2013.04.011
Article
Google Scholar
Damineli BL, Kemeid FM, Aguiar PS, John VM (2010) Measuring the eco-efficiency of cement use. Cem Concr Compos 32:555–562. doi:10.1016/j.cemconcomp.2010.07.009
Article
Google Scholar
Habert G, Roussel N (2009) Study of two concrete mix-design strategies to reach carbon mitigation objectives. Cem Concr Compos 31:397–402. doi:10.1016/j.cemconcomp.2009.04.001
Article
Google Scholar
Aïtcin P (2000) Cements of yesterday and today: concrete of tomorrow. Cem Concr Res 30:1349–1359
Article
Google Scholar
Fennis SAAM (2010) Design of ecological concrete by particle packing optimization, Ph.D. Dissertation. Delft University of Technology, Netherlands
Figueiras H, Nunes S, Coutinho JS, Figueiras J (2009) Combined effect of two sustainable technologies: Self-compacting concrete (SCC) and controlled permeability formwork (CPF). Constr Build Mater 23:2518–2526. doi:10.1016/j.conbuildmat.2009.02.035
Article
Google Scholar
Khayat KH (1999) Workability, testing, and performance of self-consolidating concrete. ACI Mater J 96:346–354
Google Scholar
Hunger M (2010) An integral design concept for ecological self-compacting concrete, Ph.D. Dissertation. Eindhoven University of Technology
Brouwers HJH, Radix HJ (2005) Self-compacting concrete: theoretical and experimental study. Cem Concr Res 35:2116–2136. doi:10.1016/j.cemconres.2005.06.002
Article
Google Scholar
Hüsken G, Brouwers HJH (2008) A new mix design concept for earth-moist concrete: a theoretical and experimental study. Cem Concr Res 38:1246–1259. doi:10.1016/j.cemconres.2008.04.002
Article
Google Scholar
Funk JE, Dinger D (1994) Predictive process control of crowded particulate suspensions: applied to ceramic manufacturing, 1st edn. doi: 10.1007/978-1-4615-3118-0
Ghezal A, Khayat KH (2002) Optimizing self-consolidating concrete with limestone filler by using statistical factorial design methods. ACI Mater J 99:264–272
Google Scholar
Khayat KH, Ghezal A, Hadriche MS (1999) Factorial design model for proportioning self- consolidating concrete. Mater Struct 32:679–686. doi:10.1007/BF02481706
Article
Google Scholar
Chen C, Habert G, Bouzidi Y et al (2010) LCA allocation procedure used as an incitative method for waste recycling: an application to mineral additions in concrete. Resour Conserv Recycl 54:1231–1240. doi:10.1016/j.resconrec.2010.04.001
Article
Google Scholar
Grünewald S, de Schutter G (2016) Design considerations and sustainability of self-compacting concrete. In: Khayat KH (ed) SCC 2016—8th International RILEM symposium on self-compacting concrete. Suppl. Vol. Washington DC, pp 1023–1032
Yang KH, Jung YB, Cho MS, Tae SH (2015) Effect of supplementary cementitious materials on reduction of CO2 emissions from concrete. J Clean Prod 103:774–783. doi:10.1016/j.jclepro.2014.03.018
Article
Google Scholar
Mueller FV, Wallevik OH, Khayat KH (2014) Linking solid particle packing of Eco-SCC to material performance. Cem Concr Compos 54:117–125. doi:10.1016/j.cemconcomp.2014.04.001
Article
Google Scholar
Wallevik OH, Nielsson I (1998) Self-compacting concrete—a rheological approach. In: International workshop on SCC. JSCE Concrete Engineering Series no. 30, Kochi, Japan, pp 136–159
Fidjestol P, Wallevik OH, Nielsson I, Holton I (2003) Topic concrete: rationale, development and laboratory performance of an environmentally friendly concrete for piling applications. In: 3rd International Symposium on SCC. Rilem, Reykjavik, Iceland, pp 920–931
Wallevik OH, Mueller FV, Hjartarson B, Kubens S (2009) The green alternative of self-compacting concrete, Eco-SCC. In: XVII IBAUSIL Weimar, vol 1, Germany, pp 1105–1116
Mueller FV, Wallevik OH (2009) Effect of maximum aggregate size in air-entrained Eco-SCC. In: 2nd International symposium on design performance and use self-consolidating concrete SCC’. Rilem, Beijing, pp 664–673
Wallevik OH, Mansour WI, Yazbeck FH, Kristjansson TI (2014) EcoCrete-Xtreme: extreme performance of a sustainable concrete. In: Wallevik OH, Bager DH, Hjartarson B, Wallevik JE (eds) Proceedings of international symposium on Eco-Crete. Reykjavik, Iceland, pp 3–10
Mueller FV (2012) Design criteria for low binder Self-Compacting Concrete, Eco-SCC, Ph.D. Dissertation. Reykjavik University
Esmaeilkhanian B, Diederich P, Khayat KH et al (2017) Influence of particle lattice effect on stability of suspensions: application to self-consolidating concrete. Mater Struct 50:39. doi:10.1617/s11527-016-0908-3
Article
Google Scholar
Ferraris CF, Obla KH, Hill R (2001) The influence of mineral admixtures on the rheology of cement paste and concrete. Cem Concr Res 31:245–255. doi:10.1016/S0008-8846(00)00454-3
Article
Google Scholar
Aïssoun BM (2011) Study of the influence of aggregate characteristics on the rheology of fluid concrete with adapted rheology, (in French), M.Sc. Thesis. Université de Sherbrooke
de Larrard F (1999) Concrete mixture proportioning: a scientific approach. E & FN Spon, London
Google Scholar
PCI TR-6-03 (2003) Interim Guidelines for the Use of Self-Consolidating Concrete in Precast/Prestressed Concrete Institute Member Plants
BIBM, CEMBUREAU, ERMCO et al (2005) The European Guidelines for Self-Compacting Concrete—Specification, Production and Use
Esmaeilkhanian B, Feys D, Khayat KH et al (2014) New test method to evaluate dynamic stability of self-consolidating concrete. ACI Mater J 111:299–307. doi:10.14359/51686573
Google Scholar
Wallevik OH, Feys D, Wallevik JE, Khayat KH (2015) Avoiding inaccurate interpretations of rheological measurements for cement-based materials. Cem Concr Res 78:100–109. doi:10.1016/j.cemconres.2015.05.003
Article
Google Scholar
Domone PLL (2006) Self-compacting concrete: an analysis of 11 years of case studies. Cem Concr Compos 28:197–208. doi:10.1016/j.cemconcomp.2005.10.003
Article
Google Scholar
Roussel N, Nguyen TLH, Yazoghli O, Coussot P (2009) Passing ability of fresh concrete: a probabilistic approach. Cem Concr Res 39:227–232. doi:10.1016/j.cemconres.2008.11.009
Article
Google Scholar
Ng IYT, Wong HHC, Kwan AKH (2006) Passing ability and segregation stability of self- consolidating concrete with different aggregate proportions. Mag Concr Res 58:447–457
Article
Google Scholar
Mahaut F, Mok S, Chateau X et al (2008) Effect of coarse particle volume fraction on the yield stress and thixotropy of cementitious materials. Cem Concr Res 38:1276–1285. doi:10.1016/j.cemconres.2008.06.001
Article
Google Scholar
Heirman G, Vandewalle L, Van Gemert D, Wallevik Ó (2008) Integration approach of the Couette inverse problem of powder type self-compacting concrete in a wide-gap concentric cylinder rheometer. J Nonnewton Fluid Mech 150:93–103. doi:10.1016/j.jnnfm.2007.10.003
Article
MATH
Google Scholar
Ferraris CF, Gaidis JM (1992) Connection between the rheology of concrete and rheology of cement paste. ACI Mater J 88:388–393
Google Scholar
Groen Beton (Green Concrete) 3.2 (2014) CUR Design Tool. http://www.sbrcurnet.nl/producten/rekentools/cur-ontwerptool-groen-beton-1
Barbhuiya SA, Gbagbo JK, Russell MI, Basheer PAM (2009) Properties of fly ash concrete modified with hydrated lime and silica fume. Constr Build Mater 23:3233–3239. doi:10.1016/j.conbuildmat.2009.06.001
Article
Google Scholar
Nochaiya T, Wongkeo W, Chaipanich A (2010) Utilization of fly ash with silica fume and properties of portland cement–fly ash–silica fume concrete. Fuel 89:768–774. doi:10.1016/j.fuel.2009.10.003
Article
Google Scholar
Lachemi M, Hossain KMA, Lambros V, Bouzoubaâ N (2003) Development of cost-effective self-consolidating concrete incorporating fly ash, slag cement, or viscosity-modifying admixtures. ACI Mater J 100:419–425
Google Scholar
Park CK, Noh MH, Park TH (2005) Rheological properties of cementitious materials containing mineral admixtures. Cem Concr Res 35:842–849. doi:10.1016/j.cemconres.2004.11.002
Article
Google Scholar
Wallevik OH, Wallevik JE (2011) Rheology as a tool in concrete science: the use of rheographs and workability boxes. Cem Concr Res 41:1279–1288. doi:10.1016/j.cemconres.2011.01.009
Article
Google Scholar
Hwang S-D, Khayat KH (2010) Effect of mix design on restrained shrinkage of self-consolidating concrete. Mater Struct 43:367–380. doi:10.1617/s11527-009-9495-x
Article
Google Scholar
Şahmaran M, Lachemi M, Erdem TK, Yücel HE (2011) Use of spent foundry sand and fly ash for the development of green self-consolidating concrete. Mater Struct 44:1193–1204. doi:10.1617/s11527-010-9692-7
Article
Google Scholar
Şahmaran M, Yaman İÖ, Tokyay M (2009) Transport and mechanical properties of self consolidating concrete with high volume fly ash. Cem Concr Compos 31:99–106. doi:10.1016/j.cemconcomp.2008.12.003
Article
Google Scholar
Şahmaran M, Yaman İÖ, Tokyay M (2007) Development of high-volume low-lime and high-lime fly-ash-incorporated self-consolidating concrete. Mag Concr Res 59:97–106
Article
Google Scholar
Silva P, de Brito J (2016) Experimental study of the mechanical properties and shrinkage of self-compacting concrete with binary and ternary mixes of fly ash and limestone filler. Eur J Environ Civ Eng 86:1–24. doi:10.1080/19648189.2015.1131200
Google Scholar
Maslehuddin M, Saricimen H, Al-Mana AI (1987) Effect of fly ash addition on the corrosion resisting characteristics of concrete. ACI Mater J 84:42–50
Google Scholar
Valcuende M, Marco E, Parra C, Serna P (2012) Influence of limestone filler and viscosity-modifying admixture on the shrinkage of self-compacting concrete. Cem Concr Res 42:583–592. doi:10.1016/j.cemconres.2012.01.001
Article
Google Scholar
Zidol A (2014) Durability of concrete incorporating glass powder in aggressive environment, (in French), Ph.D. Dissertation. Université de Sherbrooke
Association Française de Génie Civil (AFGC) (2004) Concrete design for a given service life of structures—durability indicators, (in French)
Shane JD, Aldea CD, Bouxsein NF et al (1999) Microstructural and pore solution changes induced by the rapid chloride permeability test measured by impedance spectroscopy. Concr Sci Eng 1:110–119
Google Scholar