Skip to main content
Log in

Effects of mix design parameters on consolidation behaviour of fresh cement-based materials

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The consolidation behaviour of fresh cementitious materials is a key factor that governs water-retaining ability of concrete and therefore its bleeding behaviour. Moreover, consolidation theory provides a tool able to predict the heterogeneous W/C (water to cement mass ratio) profile within formwork. Recent studies have shown that bleeding rate of cement-based materials is controlled by the material permeability and the amount of available free water, which can be computed using concrete compressibility. Both parameters can be combined to compute the consolidation coefficient, which describes the whole consolidation process. The aim of this study is to describe the effect of mix-design parameters, such as aggregates volume fraction, water reducing admixture and two fillers, on the consolidation behaviour of fresh cement-based materials. The evolution of both permeability and compressibility of concrete for the three studied mix design parameters are given in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Terzaghi K, Peck RB, Mesri G (1996) Soil mechanics in engineering practice, 3rd edn. Wiley, New York

    Google Scholar 

  2. Morris PH, Dux PF (2010) Analytical solutions for bleeding of concrete due to consolidation. Cem Concr Res 40:1531–1540

    Article  Google Scholar 

  3. de Josserand L, Larrard F (2004) A method for concrete bleeding measurement. Mater Struct 37:666–670

    Article  Google Scholar 

  4. Assaad JJ, Harb J (2011) Surface settlement of cementitious-based materials determined by oedometer testing. Mater Struct 44:845–856

    Article  Google Scholar 

  5. Yim JY, Kim JH, Kwak HY, Kim JK (2013) Evaluation of internal bleeding in concrete using a self-weight bleeding test. Cem Concr Res 53:18–24

    Article  Google Scholar 

  6. Perrot A, Rangeard D, Mélinge Y (2014) Prediction of the ram extrusion force of cement-based materials. Appl Rheol 24:53320

    Google Scholar 

  7. Powers TC (1968) Properties of fresh concrete. Wiley & Co, New York, p 661

    Google Scholar 

  8. de Josserand L, Larrard F (2004) A method for concrete bleeding measurement. Mater Struct 37:666–670

    Article  Google Scholar 

  9. Perrot A, Lecompte T, Khelifi H, Brumaud C, Hot J, Roussel N (2012) Yield stress and bleeding of fresh cement pastes. Cem Concr Res 42:937–944

    Article  Google Scholar 

  10. Miltiadou-Fezans A, Tassios TP (2013) Stability of hydraulic grouts for masonry strengthening. Mater Struct 46:1631–1652

    Article  Google Scholar 

  11. Ghourchian S, Wyrzykowski M, Lura P (2016) The bleeding test: a simple method for obtaining the permeability and bulk modulus of fresh concrete. Cem Concr Res 89:249–256

    Article  Google Scholar 

  12. Peng Y, de Jacobsen S, Weerdt K, Pedersen B (2013) Model and test methods for stability of cement paste. ASTM Adv Civ Eng Mater 3:1–24

    Article  Google Scholar 

  13. Wainwright PJ, Ait-Aider H (1995) The influence of cement source and slag additions on the bleeding of concrete. Cem Concr Res 25:1445–1456

    Article  Google Scholar 

  14. Khayat KH (1998) Viscosity-enhancing admixtures for cement-based materials—an overview. Cem Concr Compos 20:171–188

    Article  Google Scholar 

  15. Mikanovic N, Jolicoeur C (2008) Influence of superplasticizers on the rheology and stability of limestone and cement pastes. Cem Concr Res 38:907–919

    Article  Google Scholar 

  16. Perrot A, Rangeard D, Picandet D, Mélinge Y (2013) Hydro-mechanical properties of fresh cement pastes containing polycarboxylate superplasticizer. Cem Concr Res 53:221–228

    Article  Google Scholar 

  17. Peng Y, Jacobsen S (2013) Influence of water/cement ratio, admixtures and filler on sedimentation and bleeding of cement paste. Cem Concr Res 53:133–142

    Article  Google Scholar 

  18. Giaccio G, Giovambattista A (1986) Bleeding: evaluation of its effects on concrete behaviour. Mater Struct 19:265–271

    Article  Google Scholar 

  19. Rangeard D, Perrot A, Picandet V, Mélinge Y, Estellé P (2015) Determination of the consolidation coefficient of low compressibility materials. Mater Struct 48:1475–1483

    Article  Google Scholar 

  20. Terzaghi K (1943) Theoretical soil mechanics. Wiley, New York

    Book  Google Scholar 

  21. Tavenas F, Leblond F, Jean P, Leroueil S (1983) The permeability of natural soft clays. Can Geotech J 20:629–660

    Article  Google Scholar 

  22. Carman PC (1956) Flow of gases through porous media. New York Academic, New York

    MATH  Google Scholar 

  23. Carman PC (1939) Permeability of saturated sands, soils and clays. J Agric Sci 29:263–273

    Article  Google Scholar 

  24. Chapuis RP, Aubertin M (2003) On the use of the Kozeny–Carman equation to predict the hydraulic conductivity of soils. Can Geotech J 40:618–628

    Google Scholar 

  25. Taylor DW (1948) Fundamentals of soil mechanics. Wiley, New York

    Google Scholar 

  26. Picandet V, Rangeard D, Perrot A, Lecompte T (2011) Permeability measurement of fresh cement paste. Cem Concr Res 41:330–338

    Article  Google Scholar 

  27. Roussel N, Lemaître A, Flatt RJ, Coussot P (2010) Steady state flow of cement suspensions: a micromechanical state of the art. Cem Concr Res 40:77–84

    Article  Google Scholar 

  28. Neale GH, Nader KN (1973) Prediction of transport processes within porous media: diffusive flow processes within an homogeneous swarm of particles. Am Inst Chem Eng J 19:112–119

    Article  Google Scholar 

  29. Perrot A, Rangeard D, Picandet V, Serhal S (2015) Effect of coarse particle volume fraction on hydraulic conductivity of fresh cement based material. Mater Struct 48(7):2291–2297

    Article  Google Scholar 

  30. Hot J, Bessaies-Bey H, Brumaud C, Duc M, Castella C, Rousse N (2014) Adsorbing polymers and viscosity of cement pastes. Cem Concr Res 63:12–19

    Article  Google Scholar 

  31. Lambe TW, Whitman RV (1969) Soil mechanics. Wiley, New York

    Google Scholar 

  32. Cozzolino EUM (1961) Statistical forecasting of compression index. Proceedings of 5th international conference on soil mechanics and foundation engineering, Paris, vol 1. pp 51–54

  33. Leroueil S, Tavenas F (1983) Propriétés caractéristiques des argiles de l’est du Canada. Can Geotech 20:681–705

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Perrot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perrot, A., Rangeard, D. Effects of mix design parameters on consolidation behaviour of fresh cement-based materials. Mater Struct 50, 117 (2017). https://doi.org/10.1617/s11527-016-0988-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-016-0988-0

Keywords

Navigation