Skip to main content

Alkali activated slag binder: effect of cations from silicate activators


Two blast furnace slags were activated by alkali hydroxide and alkali silicate solutions possessing different modulus (0.5, 1 and 2), as well as cations (sodium and potassium). Their properties, including the setting time, heat of hydration, compressive strength as well as porosity and morphology have been investigated on both fresh and hardened pastes. The results showed that the cations of these silicate activators exerted a significant effect on the performance of the alkali activated slag binder, whereby the mechanical strength of the binder was promoted greater by the potassium silicate solution as compared to by the sodium silicate solution.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Pacheco Torgal F (2015) Introduction to handbook of alkali-activated cements, mortars and concretes. In: Pacheco-Torgal F (ed) Handbook of alkali-activated cements, mortars and concretes. Elsevier, Cambridge, pp 1–16

    Chapter  Google Scholar 

  2. Shi C, Krivenko PV, Roy D (2006) Alkali-activated cements and concrete. Taylor and Francis, New York

    Book  Google Scholar 

  3. García Lodeiro I, Palomo A, Jiminez Fernandez, Maria Ana (2015) Chapter 3 Crucial insights on the mix design of alkali-activated cementbased binders. In: Pacheco-Torgal F (ed) Handbook of alkali-activated cements, mortars and concretes. Elsevier, Cambridge, pp 49–74

    Chapter  Google Scholar 

  4. Bernal SA, Provis JL, Fernandez-Jimenez A et al. (2014) Chapter 3 binder chemistry – high-calcium alkali- activated materials. In: Provis JL, van Deventer, JSJ (eds). Alkali activated materials. State-of-the-Art Report, RILEM TC 224-AAM. Springer, Berlin, pp 59–91

  5. Tänzer R, Buchwald A, Stephan D (2015) Effect of slag chemistry on the hydration of alkali-activated blast-furnace slag. Mater Struct 48(3):629–641

    Article  Google Scholar 

  6. Ben Haha M, Lothenbach B, Le Saout G et al (2012) Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag-Part II: effect of Al2O3. Cem Concr Res 42(1):74–83

    Article  Google Scholar 

  7. Ben Haha M, Lothenbach B, Le Saout G et al (2011) Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag-Part I. Effect of MgO. Cem Concr Res 41(9):955–963

    Article  Google Scholar 

  8. Wang S, Scrivener KL, Pratt PL (1994) Factors affecting the strength of alkali-activated slag. Cem Concr Res 24(6):1033–1043

    Article  Google Scholar 

  9. Wang P (2000) Charakterisierung der Reaktivität von Hüttensanden. Doctoral Thesis, Johannes Gutenberg Universität, Mainz

  10. Krizan D, Zivanovic B (2002) Effects of dosage and modulus of water glass on early hydration of alkali-slag cements. Cem Concr Res 32(8):1181–1188

    Article  Google Scholar 

  11. Bin Q (1988) Investigation of alkali-steel and BFS slag cements. Master Thesis, Nanjing Institute of Chemical Technology, China

  12. van Jaarsveld JGS, van Deventer JSJ (1999) Effect of the alkali metal activator on the properties of fly ash-based geopolymers. Ind Eng Chem Res 38(10):3932–3941

    Article  Google Scholar 

  13. Fernández-Jiménez A, Palomo A, Criado M (2006) Activación alcalina de cenizas volantes. Estudio comparativo entre activadores sódicos y potásicos. Mater Constr 56(281):158–189

    Google Scholar 

  14. Dakhane A, Peng Z, Marzke R et al (2014) Comparative analysis of the influence of sodium and potassium silicate solutions on the kinetics and products of slag activation. Adv Civ Eng Matls 3(1):371–387

    Article  Google Scholar 

  15. Depasse J (1997) Coagulation of colloidal silica by alkaline cations. Surface dehydration or interparticle bridging? J Colloid Interface Sci 194(1):260–262

    Article  Google Scholar 

  16. Roy A, Schilling PJ, Eaton HC et al (1992) Activation of ground blast-furnace slag by alkali-metal and alkaline-earth hydroxides. J Am Ceram Soc 75(12):3233–3240

    Article  Google Scholar 

  17. Rajaokarivony-Andriambololona Z, Thomassin JH, Baillif P et al (1990) Experimental hydration of two synthetic glassy blast furnace slags in water and alkaline solutions (NaOH and KOH 0.1 N) at 40° C. Structure, composition and origin of the hydrated layer. J Mater Sci 25(5):2399–2410

    Article  Google Scholar 

  18. DIN EN 196-3 (2005) Methods of testing cement-Part 3: determination of setting times and soundness

  19. DIN EN 196-1 (2005) Methods of testing cement-Part 1: determination of strength

  20. DIN 66133 (1993) Determination of pore volume distribution and specific surface area of solids by mercury intrusion

  21. Fernández-Jiménez A, Puertas F (2001) Setting of alkali-activated slag cement. Influence of activator nature. Adv Cem Res 13(3):115–121

    Article  Google Scholar 

  22. Zellmann H (2008) Metaphosphat-modifizierte Silikatbinder als Basis säurebeständiger Beschichtungsmaterialien. Doctoral Thesis, Bauhaus-Universität, Weimar

  23. Milonjić SK (1992) A relation between the amounts of sorbed alkali cations and the stability of colloidal silica. Colloids Surf 63(1–2):113–119

    Article  Google Scholar 

  24. Taylor HFW (1997) Cement chemistry, 2nd ed. T. Telford, London

  25. Gruskovnjak A, Lothenbach B, Holzer L et al (2006) Hydration of alkali-activated slag. comparison with ordinary Portland cement. Adv Cem Res 18(3):119–128

    Article  Google Scholar 

  26. Fernandez-Jimenez A, Puertas F (1997) Alkali-activated slag cements: kinetic studies. Cem Concr Res 27(3):359–368

    Article  Google Scholar 

  27. Garcia-Lodeiro I, Palomo A, Fernández-Jiménez A et al (2011) Compatibility studies between N–A–S–H and C–A–S–H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O. Cem Concr Res 41(9):923–931

    Article  Google Scholar 

  28. Shi CJ (1996) Strength, pore structure and permeability of alkali-activated slag mortars. Cem Concr Res 26(12):1789–1799

    Article  Google Scholar 

  29. Shi C, Krivenko PV, Roy DM (1997) Alkali-activated cements and concretes. Theory and application. Modern concrete technology, vol 14. Taylor & Francis, London

    Google Scholar 

Download references


The authors thank Dr. Ehrenberg (FEhS) and Dr. Krakehl (Woellner GmbH) for the supply of slag and alkali silicate solutions. Furthermore, the work of the laboratory staff of the University of Kassel is greatly acknowledged.


This study was funded by Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF, Grant Number: 15800 BG) and Federal Ministry of Education and Research of Germany (BMBF, Grant Number: 03X0067G).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Dietmar Stephan.

Ethics declarations

Conflict of interest

We declare that there is no conflict of interest in this study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tänzer, R., Jin, Y. & Stephan, D. Alkali activated slag binder: effect of cations from silicate activators. Mater Struct 50, 91 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Blast furnace slag
  • Alkali activation
  • Sodium/potassium silicate
  • Water glass