Skip to main content
Log in

Study of pozzolanic activity of bamboo stem ashes for use as partial replacement of cement

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Studies of the use of agricultural wastes or natural resources as cement replacements have increased in recent years. The evaluation of their pozzolanic activity is essential to predict the behavior of modified cementitious materials elaborated with these resources. This work presents a study of the pozzolanic activity of bamboo stem ashes, which were obtained by calcining bamboo stem at 600 °C for 3 h in a calcination furnace. Several methods such as Chapelle test, saturated lime method, thermogravimetric analysis and strength activity index were proposed to evaluate the pozzolanic activity. The results of X-ray fluorescence and X-ray diffraction indicate that bamboo stem ashes are mainly composed of Silica (SiO2) with an amorphous phase. The Chapelle test and the saturated lime method showed the pozzolanic activity of bamboo stem ashes. Finally, at 7 and 28 days, mortars containing 10 % by weight of bamboo stem ashes show a strength activity index greater than 75 % as recommended by ASTM C618.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Global cement report 11th Edn, Published by ICR

  2. Baxi CV, Prasad A (2005) Corporate social responsibility: concepts and cases: the indian experience. Excel Books India, New Delhi

    Google Scholar 

  3. Hanle LJ, Jayaraman KR, Smith JS (2004) CO2 emissions profile of the US cement industry. US Environmental Protection Agency, Pennsylvania

    Google Scholar 

  4. Palomo A, Alonso S, Fernandez-Jiménez A, Sobrados I, Sanz J (2004) Alkaline activation of fly ashes: NMR study of the reaction products. J Am Ceram Soc 87:1141–1145

    Article  Google Scholar 

  5. Van Oss H, Padovani AC (2002) Cement manufacture and the environment. J Ind Ecol 6:89–106

    Article  Google Scholar 

  6. Fairbairn EMR, Americano BB, Cordeiro GC, Paula TP, Toledo Filho RD, Silvoso MM (2010) Cement replacement by sugar cane bagasse ash: CO2 emissions reduction and potential for carbon credits. J Environ Manag 91:1864–1871

    Article  Google Scholar 

  7. Gartner E (2004) Industrially interesting approaches to “low-CO2” cements. Cem Concr Res 34:1489–1498

    Article  Google Scholar 

  8. Tyrer M, Cheeseman CR, Greaves R et al (2010) Potential for carbon dioxide reduction from cement industry through increased use of industrial pozzolans. Adv Appl Ceram 109:275–279

    Article  Google Scholar 

  9. ASTM C618 (2012) Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete

  10. Ganesan K, Rajagopal K, Thangavel K (2007) Evaluation of bagasse ash as supplementary cementitious material. Cem Concr Comp 29:515–524

    Article  Google Scholar 

  11. Singh NB, Singh VD, Rai S (2000) Hydration of bagasse ash-blended Portland cement. Cem Concr Res 30:1485–1488

    Article  Google Scholar 

  12. Adesanya DA (2001) The effects of thermal conductivity and chemical attack on corn cob ash blended cement. Prof Build 66:3–10

    Google Scholar 

  13. Cordeiro GC, Toledo Filho RD, Fairbairn EMR (2009) Use of ultrafine rice husk ash with high-carbon content as pozzolan in high performance concrete. Mater Struct 42:983–992

    Article  Google Scholar 

  14. Zhang MH, Malhotra VM (1996) High-performance concrete incorporating rice husk ash as a supplementary cementing material. ACI Mater J 93:629–636

    Google Scholar 

  15. Sata V, Jaturapitakkul C, Kiattikomol K (2004) Utilization of palm oil fuel ash in high-strength concrete. J Mater Civ Eng 16:623–628

    Article  Google Scholar 

  16. Dwivedi VN, Singh NP, Dasa SS, Singh NB (2006) A new pozzolanic material for cement industry: bamboo leaf ash. Int J Phys Sci 1:106–111

    Google Scholar 

  17. Frías M, Savastano H, Villar E, Sánchez de Rojas MI, Santos S (2012) Characterization and properties of blended cement matrices containing activated bamboo leaf wastes. Cem Concr Comp 34:1019–1023

    Article  Google Scholar 

  18. Singh NB, Das SS, Singh NP, Dwivedi VN (2009) Studies on SCLA composite Portland cement. Indian J Eng Mater Sci 16:415–422

    Google Scholar 

  19. Kanning RC, Portella KF, Bragança MO, Bonato MM, Dos Santos J (2014) Banana leaves ashes as pozzolan for concrete and mortar of Portland cement. Constr Build Mater 54:460–465

    Article  Google Scholar 

  20. Nakanishi EY, Frías M, Martínez-Ramírez S, Santos SF, Rodrigues MS, Rodríguez O, JrH Savastano (2014) Characterization and properties of elephant grass ashes as supplementary cementing material in pozzolan/Ca(OH)2 pastes. Constr Build Mater 73:391–398

    Article  Google Scholar 

  21. Norme AFNOR NF EN 196-5 (2013) Méthodes d’essais des ciments-Partie 5: essai de pouzzolanicité des ciments pouzzolaniques

  22. Frias M, Villar-Cocina E, Sanchez de Rojas MI, Valencia-Morales E (2005) The effect that different pozzolanic activity methods has on the kinetic constants of the pozzolanic reaction in sugar cane straw-ash/lime systems: application of a kinetic-diffusive model. Cem Concr Res 35:2137–2142

    Article  Google Scholar 

  23. Frias M, Villar-Cocina E, Valencia-Morales E (2007) Characterization of sugar cane straw waste as pozzolanic material for construction: calcining temperature and kinetic parameters. Waste Manage 27:533–538

    Article  Google Scholar 

  24. ASTM C311 (2013) Standard Test Methods for Sampling and Testing Fly Ash or Natural Pozzolans for Use in Portland-Cement Concrete

  25. Cordeiro GC, Toledo Filho RD, Tavares LM, Fairbairn EDMR (2009) Ultrafine grinding of sugar cane bagasse ash for application as pozzolanic admixture in concrete. Cem Concr Res 39:110–115

    Article  Google Scholar 

  26. Hernandez JM, Middendor B, Gehrke M, Budelmann H (1998) Use of wastes of the sugar industry as pozzolana in lime-pozzolana binders: study of the reaction. Cem Concr Res 28:1525–1536

    Article  Google Scholar 

  27. McCarter WJ, Tran D (1996) Monitoring pozzolanic activity by direct activation with calcium hydroxide. Constr Build Mater 10:179–184

    Article  Google Scholar 

  28. Paya J, Borrachero MV, Monzo J, Peris-Mora E, Amahjour F (2001) Enhanced conductivity measurement techniques for evaluation of fly ash pozzolanic activity. Cem Concr Res 31:41–49

    Article  Google Scholar 

  29. Mostafa NY, Brown PW (2005) Heat of hydration of high reactive pozzolans in blended cements: isothermal conduction calorimetry. Thermo Acta 435:162–167

    Article  Google Scholar 

  30. Mostafa NY, El-Hemaly SAS, Al-Wakeef EI, El-Korashy SA, Brown PW (2001) Characterisation and evaluation of the pozzolanic activity of Egyptian industrial by-products I: silica fume and dealuminated kaolin. Cem Concr Res 31:467–474

    Article  Google Scholar 

  31. Cordeiro GC, Toledo Filho RD, Tavares LM, Fairbairn EMR (2008) Pozzolanic activity and filler effect of sugar cane bagasse ash in Portland cement and lime mortars. Cem Concr Comp 30:410–418

    Article  Google Scholar 

  32. Janjaturaphan S, Wansonm S (2010) Pozzolanic activity of industrial sugar cane bagasse ash. Suranaree J Sci Technol 17:349–357

    Google Scholar 

  33. Martinera Hernandez JFM, Middeendorf B, Gehrke M, Budelmann H (1998) Use of wastes of the sugar industry as pozzolana in lime-pozzolana binders: study of the reaction. Cem Concr Res 36:1525–1536

    Article  Google Scholar 

  34. Morales EV, Villar-Cociña E, Frías M, Santos SF, Savastano H Jr (2009) Effects of calcining conditions on the microstructure of sugar cane waste ashes (SCWA): influence in the pozzolanic activation. Cem Concr Comp 31:22–28

    Article  Google Scholar 

  35. Villar-Cocina E, Valencia E, Santo SF, JrH Savastano, Frías M (2011) Pozozlanic behavior of bamboo leaf ash: characterization and determination of the kinetic parameters. Cem Concr Comp 33:68–73

    Article  Google Scholar 

  36. Norme AFNOR NF EN 196-6 (2012) Méthodes d’essais des ciments Partie 6: détermination de la finesse

  37. Norme AFNOR NF EN 197-1 (2012) Ciment-Partie 1: composition, spécifications et critères de conformité des ciments courants

  38. Raverdy M, Brivot F, Paillère AM, Bron R (1980) Appréciation de l’activité pouzzolanique de constituents secondaires. Paper presented at the 7e Congrés International de la Chimie des Ciments, Paris

  39. El-Jazairi B, Illston JM (1977) A simultaneous semi-isothermal method of thermogravimetry and derivative thermogravimetry, and its application to cement pastes. Cem Concr Res 7:247–257

    Article  Google Scholar 

  40. Norme AFNOR NF EN 196-1 (2009) Méthodes d’essais des ciments Partie 1: détermination des résistances mécaniques

  41. Walker R, Pavía S (2011) Physical properties and reactivity of pozzolans, and their influence on the properties of lime–pozzolan pastes. Mater Struct 44:1139–1150

    Article  Google Scholar 

  42. Cassidy P, Ashton S (2007) Ash content. In: Hubbard W, Biles L, Mayfield C, Ashton S (eds) Sustainable forestry for bioenergy and bio-based products: trainers curriculum notebook. Southern Forest research Partnership, Athens, pp 201–202

    Google Scholar 

  43. Day KW, Aldred J, Hudson B (2013) Concrete mix design, quality control and specification, 4th edn. CRC Press, Boca Raton

    Book  Google Scholar 

  44. Cordeiro GC, Toledo Filho RD, Tavares LM, Fairbairn EDMR, Hempel S (2011) Influence of particle size and specific surface area on the pozzolanic activity of residual rice husk ash. Cem Concr Comp 33:529–534

    Article  Google Scholar 

  45. Paya J, Monzo J, Borrachero MV (2010) Outstanding aspect on the use of rice husk and similar agro wastes in the preparation of binders, I Pro-Africa Conference: Non-conventional building materials based on agroindustrial wastes. Pirassununga

  46. Taylor HFW (1997) Cement chemistry (2nd Ed.) Thomas Telford Services Ltd. (Ed.), Thomas Telford Publishing, London

  47. Donatello S, Tyrer M, Cheeseman CR (2010) Comparison of test methods to assess pozzolanic activity. Cem Concr Comp 32:121–127

    Article  Google Scholar 

  48. Shaikh FUA, Supit SWM (2015) Compressive strength and durability properties of high volume fly ash (HVFA) concretes containing ultrafine fly ash (UFFA). Constr Build Mater 82:192–205

    Article  Google Scholar 

  49. Paya J, Monzó J, Borrachero MV, Rodriguez SV (2013) Pozzolanic reaction rate of fluid catalytic cracking residue (FC3R) in cement pastes. Adv Cem Res 25:112–118

    Article  Google Scholar 

  50. Moraes JCB, Akasaki JL, Melges JLP et al (2015) Assessment of sugar cane straw ash (SCSA) as pozzolanic material in blended Portland cement: microstructural characterization of pastes and mechanical strength of mortars. Constr Build Mater 94:670–677

    Article  Google Scholar 

  51. Kroehong W, Sinsiri T, Jaturapitakkul C, Chindaprasirt P (2011) Effect of palm oil fuel ash fineness on the microstructure of blended cement paste. Constr Build Mater 25:4095–4104

    Article  Google Scholar 

  52. Lawrence P, Cyr M, Ringot E (2003) Mineral admixture in mortars Effect of inert materials on short-term hydration. Cem Concr Res 33:1939–1947

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank: The Region Guadeloupe and the Fonds Européens for the financial support, the Laboratoire Matériaux et Durabilité des Constructions (LMDC, Toulouse FRANCE) for the opportunity for collaborative research, the Service Central d’Analyse of CNRS, Lyon FRANCE and the Institut de Chimie de la Matière Condensée de Bordeaux for analyses performed.

Funding

This study was funded by Région Guadeloupe and Fonds Européens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Rodier.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodier, L., Bilba, K., Onésippe, C. et al. Study of pozzolanic activity of bamboo stem ashes for use as partial replacement of cement. Mater Struct 50, 87 (2017). https://doi.org/10.1617/s11527-016-0958-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-016-0958-6

Keywords

Navigation