Skip to main content

Advertisement

Log in

Comparison of ground bottom ash and limestone as additions in blended cements

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The number of fluidized bed power plants is growing rapidly due to economic and environmental benefits. These facilities produce larger quantities of bottom ash than conventional boilers. This ash exhibits pozzolanic activity once ground, but due to regulation limitations this by-product is nowadays destined to landfill. Blended cements are the most common cements in Europe and their consumption is continuously growing due to the reduction of environmental impact they allow. In this work, ground bottom ash (GBA) is characterized to determine whether it is suitable for blended cements’ production. This GBA was used in ratios of 10, 20 and 40 % as cement replacement. At the same time, it was compared with type I cement without additions and also with the second most used addition in blended cements: limestone. The cements with GBA showed acceptable performance to produce general purpose cements in the frame of present regulations, reaching 52.5 MPa at 28 days for 10 % of substitution. When compared with limestone, the cements with GBA presented higher compressive strength, better durability and a slight reduction in workability. At the same time, GBA led to higher clinker reductions, thus directly causing lower environmental impacts, and also indirect benefits from the prevention of the disposal in landfill of this bottom ash from fluidized-bed boilers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Park JY (2014) The evolution of waste into a resource: examining innovation in technologies reusing coal combustion by-products using patent data. Res Policy 43:1816–1826. doi:10.1016/j.respol.2014.06.002

    Article  Google Scholar 

  2. ASTM International (2012) ASTM C618-12a Standard specification for coal Fly Ash and raw or calcined natural pozzolan for use in concrete. 12a:5

  3. AENOR (2011) EN 197-1 Cement. Composition, specifications and conformity criteria for common cements. 30

  4. Ahmaruzzaman M (2010) A review on the utilization of fly ash. Prog Energy Combust Sci 36:327–363. doi:10.1016/j.pecs.2009.11.003

    Article  Google Scholar 

  5. Sheng G, Zhai J, Li Q, Li F (2007) Utilization of fly ash coming from a CFBC boiler co-firing coal and petroleum coke in Portland cement. Fuel 86:2625–2631. doi:10.1016/j.fuel.2007.02.018

    Article  Google Scholar 

  6. Redemann K, Hartge E-U, Werther J (2008) Ash management in circulating fluidized bed combustors. Fuel 87:3669–3680. doi:10.1016/j.fuel.2008.07.002

    Article  Google Scholar 

  7. Yang H, Yue G, Xiao X et al (2005) 1D modeling on the material balance in CFB boiler. Chem Eng Sci 60:5603–5611. doi:10.1016/j.ces.2005.04.081

    Article  Google Scholar 

  8. Junfu L, Jiansheng Z, Hai Z et al (2007) Performance evaluation of a 220t/h CFB boiler with water-cooled square cyclones. Fuel Process Technol 88:129–135. doi:10.1016/j.fuproc.2004.12.008

    Article  Google Scholar 

  9. American Coal Ash Association (ACAA) (2016) User guidelines for waste and byproduct materials in pavement construction: coal bottom ash/boiler slag material description. User Guidel Waste Byprod Mater Pavement Constr. Publication Number: FHWA-RD-97-148

  10. Gómez-Barea A, Vilches LF, Leiva C et al (2009) Plant optimisation and ash recycling in fluidised bed waste gasification. Chem Eng J 146:227–236. doi:10.1016/j.cej.2008.05.039

    Article  Google Scholar 

  11. Wang S, Miller A, Llamazos E et al (2008) Biomass fly ash in concrete: mixture proportioning and mechanical properties. Fuel 87:365–371. doi:10.1016/j.fuel.2007.05.026

    Article  Google Scholar 

  12. Rajamane NP, Annie Peter J, Ambily PS (2007) Prediction of compressive strength of concrete with fly ash as sand replacement material. Cem Concr Compos 29:218–223. doi:10.1016/j.cemconcomp.2006.10.001

    Article  Google Scholar 

  13. Li X-G, Lv Y, Ma B-G et al (2012) Utilization of municipal solid waste incineration bottom ash in blended cement. J Clean Prod 32:96–100. doi:10.1016/j.jclepro.2012.03.038

    Article  Google Scholar 

  14. Saccani A, Sandrolini F, Andreola F, Barbieri L, Corradi A, Lancellotti I (2005) Influence of the pozzolanic fraction obtained from vitrified bottom-ashes from MSWI on the properties of cementitious composites. Mater Struct 38:367–371. doi:10.1617/14173

    Article  Google Scholar 

  15. Kim HK, Lee HK (2011) Use of power plant bottom ash as fine and coarse aggregates in high-strength concrete. Constr Build Mater 25:1115–1122. doi:10.1016/j.conbuildmat.2010.06.065

    Article  Google Scholar 

  16. Zhang B, Poon CS (2015) Use of furnace bottom ash for producing lightweight aggregate concrete with thermal insulation properties. J Clean Prod 99:94–100. doi:10.1016/j.jclepro.2015.03.007

    Article  Google Scholar 

  17. Chindaprasirt P, Rattanasak U, Jaturapitakkul C (2011) Utilization of fly ash blends from pulverized coal and fluidized bed combustions in geopolymeric materials. Cem Concr Compos 33:55–60. doi:10.1016/j.cemconcomp.2010.09.017

    Article  Google Scholar 

  18. Sathonsaowaphak A, Chindaprasirt P, Pimraksa K (2009) Workability and strength of lignite bottom ash geopolymer mortar. J Hazard Mater 168:44–50. doi:10.1016/j.jhazmat.2009.01.120

    Article  Google Scholar 

  19. Antunes Boca Santa RA, Bernardin AM, Riella HG, Kuhnen NC (2013) Geopolymer synthetized from bottom coal ash and calcined paper sludge. J Clean Prod 57:302–307. doi:10.1016/j.jclepro.2013.05.017

    Article  Google Scholar 

  20. Cabrera M, Agrela F, Ayuso J et al (2015) Feasible use of biomass bottom ash in the manufacture of cement treated recycled materials. Mater Struct. doi:10.1617/s11527-015-0715-2

    Google Scholar 

  21. Cheriaf M, Rocha JC, Péra J (1999) Pozzolanic properties of pulverized coal combustion bottom ash. Cem Concr Res 29:1387–1391. doi:10.1016/S0008-8846(99)00098-8

    Article  Google Scholar 

  22. Kurama H, Kaya M (2008) Usage of coal combustion bottom ash in concrete mixture. Constr Build Mater 22:1922–1928. doi:10.1016/j.conbuildmat.2007.07.008

    Article  Google Scholar 

  23. Kurama H, Topçu İB, Karakurt C (2009) Properties of the autoclaved aerated concrete produced from coal bottom ash. J Mater Process Technol 209:767–773. doi:10.1016/j.jmatprotec.2008.02.044

    Article  Google Scholar 

  24. Kiattikomol K, Jaturapitakkul C, Songpiriyakij S, Chutubtim S (2001) A study of ground coarse fly ashes with different finenesses from various sources as pozzolanic materials. Cem Concr Compos 23:335–343. doi:10.1016/S0958-9465(01)00016-6

    Article  Google Scholar 

  25. Felekoğlu B, Türkel S, Kalyoncu H (2009) Optimization of fineness to maximize the strength activity of high-calcium ground fly ash—Portland cement composites. Constr Build Mater 23:2053–2061. doi:10.1016/j.conbuildmat.2008.08.024

    Article  Google Scholar 

  26. Antiohos SK, Tsimas S (2007) A novel way to upgrade the coarse part of a high calcium fly ash for reuse into cement systems. Waste Manag 27:675–683. doi:10.1016/j.wasman.2006.03.016

    Article  Google Scholar 

  27. Kumar R, Kumar S, Mehrotra SP (2007) Towards sustainable solutions for fly ash through mechanical activation. Resour Conserv Recycl 52:157–179. doi:10.1016/j.resconrec.2007.06.007

    Article  Google Scholar 

  28. Vargas J, Halog A (2015) Effective carbon emission reductions from using upgraded fly ash in the cement industry. J Clean Prod 103:948–959. doi:10.1016/j.jclepro.2015.04.136

    Article  Google Scholar 

  29. The European cement Association (2013) Cements for a low-carbon Europe. 23 p

  30. International Energy Agency (2009) Cement Technology Roadmap 2009: Carbon emissions reductions up to 2050. 36 p

  31. Payá J, Monzó J, Borrachero MV, Peris-Mora E (1995) Mechanical treatment of fly ashes. Part I: physico-chemical characterization of ground fly ashes. Cem Concr Res 25:1469–1479. doi:10.1016/0008-8846(95)00141-X

    Article  Google Scholar 

  32. Bouzoubaâ N, Zhang MH, Bilodeau A, Malhotra VM (1997) The effect of grinding on the physical properties of fly ashes and a Portland cement clinker. Cem Concr Res 27:1861–1874. doi:10.1016/S0008-8846(97)00194-4

    Article  Google Scholar 

  33. Felekoğlu B, Türkel S, Baradan B (2007) Effect of water/cement ratio on the fresh and hardened properties of self-compacting concrete. Build Environ 42:1795–1802. doi:10.1016/j.buildenv.2006.01.012

    Article  Google Scholar 

  34. Canpolat F, Yılmaz K, Köse MM et al (2004) Use of zeolite, coal bottom ash and fly ash as replacement materials in cement production. Cem Concr Res 34:731–735. doi:10.1016/S0008-8846(03)00063-2

    Article  Google Scholar 

  35. AENOR (2012) EN 933-1 Tests for geometrical properties of aggregates. Determination of particle size distribution. Sieving method. 22

  36. Jaturapitakkul C, Kiattikomol K, Sata V, Leekeeratikul T (2004) Use of ground coarse fly ash as a replacement of condensed silica fume in producing high-strength concrete. Cem Concr Res 34:549–555. doi:10.1016/S0008-8846(03)00150-9

    Article  Google Scholar 

  37. AENOR (2008) EN 196-3 Methods of testing cement. Determination of setting times and soundness. 18

  38. AENOR (2005) EN 196-1 Methods of essay of cement. Part1: mechanical properties. Spain

  39. Corinaldesi V, Moriconi G (2011) The role of industrial by-products in self-compacting concrete. Constr Build Mater 25:3181–3186. doi:10.1016/j.conbuildmat.2011.03.001

    Article  Google Scholar 

  40. Singh M, Siddique R (2015) Properties of concrete containing high volumes of coal bottom ash as fine aggregate. J Clean Prod 91:269–278. doi:10.1016/j.jclepro.2014.12.026

    Article  Google Scholar 

  41. AENOR (2009) EN 12350-2 Testing fresh concrete. Slump-test. 12

  42. AENOR (2009) EN 12390-3 Testing hardened concrete. Compressive strength of test specimens. 22

  43. AENOR (2009) EN 12390-6 Testing hardened concrete. Tensile splitting strength of test specimens. 14

  44. AENOR (2009) EN 12390-8 Testing hardened concrete. Depth of penetration of water under pressure. 10

  45. AENOR (2009) EN 12390-7 Testing hardened concrete. Density of hardened concrete. 14

  46. Chia KS, Zhang M-H (2002) Water permeability and chloride penetrability of high-strength lightweight aggregate concrete. Cem Concr Res 32:639–645. doi:10.1016/S0008-8846(01)00738-4

    Article  Google Scholar 

  47. Basheer L, Kropp J, Cleland DJ (2001) Assessment of the durability of concrete from its permeation properties: a review. Constr Build Mater 15:93–103. doi:10.1016/S0950-0618(00)00058-1

    Article  Google Scholar 

  48. Kearsley EP, Wainwright PJ (2001) Porosity and permeability of foamed concrete. Cem Concr Res 31:805–812. doi:10.1016/S0008-8846(01)00490-2

    Article  Google Scholar 

  49. Termkhajornkit P, Nawa T, Yamashiro Y, Saito T (2009) Self-healing ability of fly ash–cement systems. Cem Concr Compos 31:195–203. doi:10.1016/j.cemconcomp.2008.12.009

    Article  Google Scholar 

  50. Joseph G, Ramamurthy K (2009) Influence of fly ash on strength and sorption characteristics of cold-bonded fly ash aggregate concrete. Constr Build Mater 23:1862–1870. doi:10.1016/j.conbuildmat.2008.09.018

    Article  Google Scholar 

  51. Comission E (2015) 2030 framework for climate and energy policies. http://ec.europa.eu/clima/policies/2030/index_en.htm. Accessed 26 May 2015

Download references

Acknowledgments

This work was supported by the company Cementos Occidentales S.A and was carried out at the Civil Engineering School of A Coruña, Spain. We would like to mention the collaboration of the company’s staff, especially Marta Ferro.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge de Brito.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Fonteboa, B., Carro-López, D., de Brito, J. et al. Comparison of ground bottom ash and limestone as additions in blended cements. Mater Struct 50, 84 (2017). https://doi.org/10.1617/s11527-016-0954-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-016-0954-x

Keywords

Navigation