Influence of particle lattice effect on stability of suspensions: application to self-consolidating concrete

Abstract

One of the parameters influencing the stability of a granular skeleton in a fluid is particle-size distribution (PSD). This phenomenon partially originates from the particle lattice effect (PLE) where in a given fluid the sedimentation behavior of one particle or a group of particles is modified in the presence of other particles. The PLE is of particular interest for the design of highly flowable concrete in which given the high fluidity of the paste, segregation of coarse aggregate is of concern. In the present study, the stability of several groups of bidisperse and polydisperse spherical glass particles (3–19 mm in diameter) suspended in limestone filler pastes designed with different rheological properties is investigated. Test results show that regardless of the PSD in the suspension, the PLE of any size-class is proportional to the volume fraction of such class. The main contribution of PLE to the enhancement of the stability of the overall system can be attributed to the stabilization of individual fine classes as the volume fractions of such classes are increased, instead of simply the interaction between different particle classes. Two indices are proposed to quantify the PLE potential of a given PSD and to predict the risk of segregation of a mixture of particles suspended in a yield stress fluid. The predictions made by the segregation index are shown to be feasible to apply to self-consolidating concrete (SCC) mixtures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Chhabra RP, Richardson JF (2008) Non- Newtonian flow and applied rheology: engineering applications, 2nd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  2. 2.

    He Y, Laskowski J, Klein B (2001) Particle movement in non-Newtonian slurries: the effect of yield stress on dense medium separation. Chem Eng Sci 56:2991–2998. doi:10.1016/S0009-2509(00)00479-6

    Article  Google Scholar 

  3. 3.

    Mendez Y (2011) A flow model for the settling velocities of non spherical particles in creeping motion. J Appl Fluid Mech 4:65–75

    Google Scholar 

  4. 4.

    Merkak O, Jossic L, Magnin A (2006) Spheres and interactions between spheres moving at very low velocities in a yield stress fluid. J Nonnewton Fluid Mech 133:99–108. doi:10.1016/j.jnnfm.2005.10.012

    Article  MATH  Google Scholar 

  5. 5.

    Hunnicutt WA, Wang K (2013) The effect of multiple particles on settling velocity in a fluid. In: Proceedings of Fifth North American conference on the design and use of self-consolidating concrete. Chicago, IL, pp 1–9

  6. 6.

    Khayat KH (1999) Workability, testing, and performance of self-consolidating concrete. ACI Mater J 96:346–354

    Google Scholar 

  7. 7.

    de Larrard F (1999) Concrete mixture-proportioning—a scientific approach, modern concrete technology series. No. 9. E & FN SPON, London

  8. 8.

    Saak AW, Jennings HM, Shah SP (2001) New methodology for designing self-compacting concrete. ACI Mater J 98:429–439

    Google Scholar 

  9. 9.

    Shen L, Struble L, Lange D (2009) Modeling static segregation of self-consolidating concrete. ACI Mater J 106:367–374. doi:10.14359/56657

    Google Scholar 

  10. 10.

    Roussel N (2006) A theoretical frame to study stability of fresh concrete. Mater Struct 39:81–91. doi:10.1617/s11527-005-9036-1

    Article  Google Scholar 

  11. 11.

    Bethmont S (2005) Segregation mechanism in self-consolidating concrete (SCC): experimental study of granular interactions, (in French), Ph.D. Dissertation. Ecole Nationale des Ponts et Chaussées

  12. 12.

    Aïssoun BM, Hwang S-D, Khayat KH (2015) Influence of aggregate characteristics on workability of superworkable concrete. Mater Struct. doi:10.1617/s11527-015-0522-9

    Google Scholar 

  13. 13.

    Brouwers HJH, Radix HJ (2005) Self-compacting concrete: theoretical and experimental study. Cem Concr Res 35:2116–2136. doi:10.1016/j.cemconres.2005.06.002

    Article  Google Scholar 

  14. 14.

    Hunger M (2010) An integral design concept for ecological self-compacting concrete, Ph.D. Dissertation. Eindhoven University of Technology

  15. 15.

    Mueller FV, Wallevik OH, Khayat KH (2014) Linking solid particle packing of Eco-SCC to material performance. Cem Concr Compos 54:117–125. doi:10.1016/j.cemconcomp.2014.04.001

    Article  Google Scholar 

  16. 16.

    Funk JE, Dinger D (1994) Predictive process control of crowded particulate suspensions: applied to ceramic manufacturing, 1st edn. Springer, New York. doi:10.1007/978-1-4615-3118-0

    Book  Google Scholar 

  17. 17.

    Ramge P, Proske T, Kuhne H-C (2010) Segregation of coarse aggregates in self-compacting concrete. In: Khayat KH, Feys D (eds) Design, production and placement of self-consolidating concrete. Springer, Dordrecht, pp 113–125

    Google Scholar 

  18. 18.

    Bethmont S, D’Aloia Schwartzentruber L, Stefani C et al (2009) Contribution of granular interactions to self compacting concrete stability: development of a new device. Cem Concr Res 39:30–35. doi:10.1016/j.cemconres.2008.10.007

    Article  Google Scholar 

  19. 19.

    Wallevik OH (2003) Rheology—a scientific approach to develop self-compacting concrete. In: Proceedings of 3rd International RILEM symposium self-compacting concrete. Reykjavik, pp 23–31

  20. 20.

    Wallevik OH, Mueller FV, Hjartarson B, Kubens S (2009) The green alternative of self-compacting concrete, Eco-SCC. In: XVII IBAUSIL, Weimar, vol 1, pp 1105–1116

  21. 21.

    Mahaut F, Mokéddem S, Chateau X et al (2008) Effect of coarse particle volume fraction on the yield stress and thixotropy of cementitious materials. Cem Concr Res 38:1276–1285. doi:10.1016/j.cemconres.2008.06.001

    Article  Google Scholar 

  22. 22.

    Assaad J, Khayat KH, Daczko J (2004) Evaluation of static stability of self-consolidating concrete. ACI Mater J 101:207–215

    Google Scholar 

  23. 23.

    Heirman G, Vandewalle L, Van Gemert D, Wallevik Ó (2008) Integration approach of the Couette inverse problem of powder type self-compacting concrete in a wide-gap concentric cylinder rheometer. J Nonnewton Fluid Mech 150:93–103. doi:10.1016/j.jnnfm.2007.10.003

    Article  MATH  Google Scholar 

  24. 24.

    Saak AW, Jennings HM, Shah SP (2001) The influence of wall slip on yield stress and viscoelastic measurements of cement paste. Cem Concr Res 31:205–212. doi:10.1016/S0008-8846(00)00440-3

    Article  Google Scholar 

  25. 25.

    Mahaut F, Chateau X, Coussot P, Ovarlez G (2008) Yield stress and elastic modulus of suspensions of noncolloidal particles in yield stress fluids. J Rheol (N Y N Y) 52:287–313. doi:10.1122/1.2798234

    Article  Google Scholar 

  26. 26.

    Andreasen AHM, Andersen J (1930) Über die Beziehung zwischen Kornabstufung und Zwischenraum in Produkten aus losen K¨ornern (mit einigen Experimenten). Kolloid- Zeitschrift 50:217–228

    Article  Google Scholar 

  27. 27.

    Midorikawa Takehiko, Pelova GI, Walraven JC (2009) Application of “The Water Layer Model” to self-compacting mortar with different size distributions of fine aggregate. HERON 54:73–100

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. Esmaeilkhanian.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Esmaeilkhanian, B., Diederich, P., Khayat, K.H. et al. Influence of particle lattice effect on stability of suspensions: application to self-consolidating concrete. Mater Struct 50, 39 (2017). https://doi.org/10.1617/s11527-016-0908-3

Download citation

Keywords

  • Particle lattice effect
  • Particle-size distribution
  • Rheology
  • Segregation
  • Self-consolidating concrete
  • Stability
  • Yield stress