Materials and Structures

, Volume 49, Issue 8, pp 3265–3279 | Cite as

Rapid screening tests for supplementary cementitious materials: past and future

Original Article

Abstract

Rapid screening tests for supplementary cementitious materials (SCMs) have been in use for over 150 years. Over the years a multitude of methods have been put forward to predict the strength development of SCM blended mortars and concrete. This paper summarizes and rationalizes the main approaches and then applies them to a selection of materials that cover a broad range of SCMs, both pozzolanic and hydraulic. Included are siliceous fly ash, blast furnace slag, natural pozzolan, metakaolin and an inert quartz filler. The selected test methods are the Chapelle test, the Frattini test, active silica and alumina extractions, a dissolution rate test, and a new calorimetry-based test. The results are compared, interpreted and discussed in view of their aim of predicting the compressive strength development. Finally, a new test method is proposed that relates the cumulative heat of the SCM reaction in a simplified model system to the compressive strength development in standardized mortars. The new method is practical, repeatable and applicable to a wide range of SCMs (both pozzolanic and hydraulic), it furthermore reduces the experiment duration by a factor of 10 and correlates well to the compressive strength development of blended cement mortar bars.

Keywords

Supplementary cementitious materials Screening test Pozzolanic activity tests Portlandite consumption Blended cements 

Notes

Acknowledgments

Hadi Kazemi-Kamyab is warmly thanked for his help in the calorimetry experiments, François Avet generously provided compressive strength data. Financial support by the European Commission under FP7-Marie Curie IEF Grant 298337 is gratefully acknowledged.

References

  1. 1.
    Vicat L (1856) Traité pratique et théorique de la composition des mortiers, ciments et gangues à pouzzolanes et de leurs emploi dans toutes sortes de travaux suivi des moyens d’en apprécier la durée dans les constructions à la mer. Imprimerie Maisonville, GrenobleGoogle Scholar
  2. 2.
    Forest J, Demoulian E (1963) Appréciation de l’activité des cendres volantes et pouzzolanes. Rev Matér Constr 577:312–317Google Scholar
  3. 3.
    Moran WT, Gilliland JL (1949) Summary of methods for determining pozzolanic activity. Am Soc Test Mater Specif Tech Publ 49:109–130Google Scholar
  4. 4.
    Watt JD, Thorne DJ (1966) Composition and pozzolanic properties of pulverized fuel ashes: Part III. J Appl Chem 16:33–39CrossRefGoogle Scholar
  5. 5.
    Massazza F (1974) Chemistry of pozzolanic additions and mixed cements. In: Proceedings of Congress on the Chemistry of Cement, pp 1–65Google Scholar
  6. 6.
    Shi C (2001) An overview on the activation of reactivity of natural pozzolans. Can J Civ Eng 28:778–786. doi:10.1139/cjce-28-5-778 CrossRefGoogle Scholar
  7. 7.
    Chapelle J (1958) Attaque sulfocalcique des laitiers et pouzzolanes. Rev Matér Constr 512:136–145Google Scholar
  8. 8.
    Raverdy M, Brivot F, Paillere AM, Dron R (1980) Appréciation de l’activité pouzzolanique des constituants secondaires. Proceedings of 7th International Congress on the Chemistry of Cement, pp IV–3/36–41Google Scholar
  9. 9.
    Benezet JC, Benhassaine A (1999) The influence of particle size on the pozzolanic reactivity of quartz powder. Powder Technol 103:26–29. doi:10.1016/S0032-5910(99)00010-8 CrossRefGoogle Scholar
  10. 10.
    Perraki T, Kakali G, Kontori E (2005) Characterization and pozzolanic activity of thermally treated zeolite. J Therm Anal Calorim 82:109–113. doi:10.1007/s10973-005-0849-5 CrossRefGoogle Scholar
  11. 11.
    Tydlitát V, Zákoutský J, Černý R (2014) Early-stage hydration heat development in blended cements containing natural zeolite studied by isothermal calorimetry. Thermochim Acta 582:53–58. doi:10.1016/j.tca.2014.03.003 CrossRefGoogle Scholar
  12. 12.
    De Luxan MP, Madruga F, Saavedra J (1989) Rapid evaluation of pozzolanic activity of natural products by conductivity measurement. Cem Concr Res 19:63–68CrossRefGoogle Scholar
  13. 13.
    Paya J, Borrachero MV, Monzo J et al (2001) Enhanced conductivity measurement techniques for evaluation of fly ash pozzolanic activity. Cem Concr Res 31:41–49CrossRefGoogle Scholar
  14. 14.
    Tashiro C, Ikeda K, Inoue Y (1994) Evaluation of pozzolanic activity by the electric resistance measurement method. Cem Concr Res 24:1133–1139CrossRefGoogle Scholar
  15. 15.
    Frattini N (1949) Richerche sulla calce di idrolisi nelle paste di cimento. Ann di Chim Appl 39:616–620Google Scholar
  16. 16.
    Donatello S, Tyrer M, Cheeseman CR (2010) Comparison of test methods to assess pozzolanic activity. Cem Concr Compos 32:121–127. doi:10.1016/j.cemconcomp.2009.10.008 CrossRefGoogle Scholar
  17. 17.
    Costa U, Massazza F (1974) Factors affecting the reaction with lime of Italian pozzolans. Il Cemento 3:131–139Google Scholar
  18. 18.
    Day R, Shi C (1994) Influence of the fineness of pozzolan on the strength of lime-natural pozzolan cement pastes. Cem Concr Res 24:1485–1491CrossRefGoogle Scholar
  19. 19.
    Ludwig U, Schwiete HE (1963) Lime combination and new formations in the trass-lime reactions. ZKG Int 10:421–431Google Scholar
  20. 20.
    Takemoto K, Uchikawa H (1980) Hydratation des ciment pouzzolaniques. 7th International Congress on the Chemistry of Cement, pp IV–1/3–21Google Scholar
  21. 21.
    Hanna KM, Afify A (1974) Evaluation of the activity of pozzolanic materials. J Appl Chem Biotechnol 24:751–757CrossRefGoogle Scholar
  22. 22.
    Watt JD, Thorne DJ (1965) Composition and pozzolanic properties of pulverized fuel ashes. Part I-II. J Appl Chem 15:586–604Google Scholar
  23. 23.
    Massazza F (2001) Pozzolana and pozzolanic cements. In: Hewlett PC (ed) Lea’s chemistry of cement and concrete. Butterworth-Heinemann, Oxford, pp 471–636Google Scholar
  24. 24.
    Kumar S, Yudhbir K (2006) A simplified model for prediction of pozzolanic characteristics of fly ash, based on chemical composition. Cem Concr Res 36:1827–1832CrossRefGoogle Scholar
  25. 25.
    Lang E (2002) Blastfurnace cements. In: Bensted J, Barnes P (eds) Structure and performance of cements, 2nd edn. Spon, London, pp 310–323Google Scholar
  26. 26.
    Durdzinski PT, Snellings R, Dunant CF, Ben Haha M, Scrivener KL (2015) Fly ash as an assemblage of model Ca–Mg–Na-aluminosilicate glasses. Cem Concr Res (in press)Google Scholar
  27. 27.
    Snellings R (2013) Solution-controlled dissolution of supplementary cementitious material glasses at pH 13: the effect of solution composition on glass dissolution rates. J Am Ceram Soc 96:2467–2475CrossRefGoogle Scholar
  28. 28.
    Langan BW, Wang K, Ward MA (2002) Effects of silica fume and fly ash on heat of hydration of Portland cement. Cem Concr Res 32:1045–1051CrossRefGoogle Scholar
  29. 29.
    Kocaba V, Gallucci E, Scrivener KL (2012) Methods for determination of degree of reaction of slag in blended cement pastes. Cem Concr Res 42:511–525. doi:10.1016/j.cemconres.2011.11.010 CrossRefGoogle Scholar
  30. 30.
    Mostafa NY, El-Hemaly SAS, Al-Wakeel EI et al (2001) Characterization and evaluation of the pozzolanic activity of Egyptian industrial by-products. I: Silica Fume Dealuminated Kaolin 31:467–474Google Scholar
  31. 31.
    Silva PS, Glasser FP (1990) Hydration of cements based on metakaolin. Adv Cem Res 3:167–177CrossRefGoogle Scholar
  32. 32.
    Geiker M, Knudsen T (1982) Chemical shrinkage of Portland cement pastes. Cem Concr Res 12:603–610CrossRefGoogle Scholar
  33. 33.
    He C, Makovicky E, Osbaeck B (1994) Thermal stability and pozzolanic activity of calcined kaolin. Appl Clay Sci 9:165–187CrossRefGoogle Scholar
  34. 34.
    Knudsen T (1985) On the possibility of following the hydration of fly ash micorsilica and fine aggregates by means of chemical shrinkage. Cem Concr Res 15:720–722CrossRefGoogle Scholar
  35. 35.
    Snellings R, Bazzoni A, Scrivener K (2014) The existence of amorphous phase in Portland cements: physical factors affecting Rietveld quantitative phase analysis. Cem Concr Res 59:139–146CrossRefGoogle Scholar
  36. 36.
    Schott J, Pokrovsky OS, Oelkers EH (2009) The link between mineral dissolution/precipitation kinetics and solution chemistry. Rev Miner Geochem 70:207–258CrossRefGoogle Scholar
  37. 37.
    Snellings R (2015) Surface chemistry of calcium aluminosilicate glasses. J Am Ceram Soc 98:303–314CrossRefGoogle Scholar
  38. 38.
    Nicoleau L, Nonat A, Perrey D (2013) The di- and tricalcium silicate dissolutions. Cem Concr Res 47:14–30. doi:10.1016/j.cemconres.2013.01.017 CrossRefGoogle Scholar
  39. 39.
    Nicoleau L, Schreiner E, Nonat A (2014) Ion-specific effects influencing the dissolution of tricalcium silicate. Cem Concr Res 59:118–138. doi:10.1016/j.cemconres.2014.02.006 CrossRefGoogle Scholar
  40. 40.
    Steopoe R (1956) Sur la détermination de l’activité hydraulique des pouzzolanes. Rev Matér Constr 492:210–212Google Scholar
  41. 41.
    Takashima S (1958) Systematic dissolution of calcium silicate in commercial Portland cement by organic acid dissolution. 16th General Meeting, Japan Cement Engineering Association, pp 12–13Google Scholar
  42. 42.
    Jambor J (1962) Une nouvelle méthode de détermination de l’activité pouzzolanique. Rev Matér Constr 564:240–256Google Scholar
  43. 43.
    Rhaask E, Bhaskar MC (1975) Pozzolanic activity of pulverized fuel ash. Cem Concr Res 5:363–376CrossRefGoogle Scholar

Copyright information

© RILEM 2015

Authors and Affiliations

  1. 1.Institute of MaterialsEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.Sustainable Materials ManagementFlemish Institute of Technological Research (VITO)MolBelgium

Personalised recommendations