Skip to main content
Log in

Bond behaviour of reinforcing bars in UHPFRC

Experimental investigation

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This paper deals with the experimental determination of the bond behaviour between ultra-high performance fiber-reinforced concrete (UHPFRC) and reinforcing bars (rebars). An experimental campaign has been carried out to assess the bond behaviour considering different rebar diameters, different embedment lengths and different concrete covers. A relationship between bond strength, compressive strength and rebar diameter has been drawn from the results of this campaign and results found in the literature. Thanks to an original instrumentation method using Fiber-Optic Sensor, the local constitutive law linking the local relative displacement between UHPFRC and rebar and the bond stress has been determined and compared with the law proposed by fib Model Code 2010.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. \(\delta\), \(\delta _1\), ... are respectively noted \(s\), \(s_1\), ... in Model Code.

References

  1. Aarup B, Karlsen J, Lindström G (2008) Fiber reinforced high performance concrete for in-situ cast joints. Proceedings of international symposium on high performance concrete, Orlando, Florida, USA, September, ACI SpringJournal

  2. AFGC-SETRA (2002) Ultra high performance fibre-reinforced concretes, interim recommendations, p 152, SETRA, Bagneux, France

  3. AFGC (2013) Ultra-high performance fibre-reinforced concretes. Recommendations. p 357, Paris, France

  4. Behloul M (1996) Analyse et modélisation du comportement d’un matériau à matrice cimentaire fibrée à ultra hautes performances. Dissertation, p 182, E.N.S. Cachan, France, in French

  5. Cattaneo S, Rosati G (2000) “Bond and splitting in high performance fiber reinforced concrete”, 5th RILEM symposium on fibre-reinforced concretes. BEFIB 2000:567–576

    Google Scholar 

  6. Chanvillard G, Rigaud S (2003) Complete characterization of tensile properties of DUCTAL® UHPFRC according to the French recommendations. Proceedings of the 4th international RILEM workshop (HPFRCC4), pp 21–34

  7. Dancygier AN, Katz A (2008) The combined effect of concrete strength and geometric parameters on concrete-reinforcement bond. 8th international symposium on utilization of high strength and high-performance concrete, Tokyo

  8. Dancygier AN, Katz A, Wexler U (2010) Bond between deformed reinforcement and normal and high-strength concrete with and without fibres. Mater Struct 43:839–856

    Article  Google Scholar 

  9. Dutalloir F, Thibaux T, Cadoret G, Birelli G (1998) Un nouveau béton très hautes performances : le BSI—Premiére application industrielle/B.S.I. : a new, very high performance concrete. Initial industrial application. In La technique française du Béton, AFPC-AFREM, XIIIe congrés de la FIP, Amsterdam, pp 25–32

  10. EN 15630–1 (2010) European Standard—steel for the reinforcement and prestressing of concrete—test methods—Part 1 : reinforcing bars, wire rod and wire

  11. Ezeldin SA, Balaguru PN (1989) Bond behavior of normal and high strength fibre reinforced concrete. ACI Mater J 86:515–524

    Google Scholar 

  12. fib Bulletin no72—Bond and anchorage of embedded reinforcement: background to the fib model code for concrete structures 2010. (2014)

  13. fib model code for concrete structures. (2010)

  14. Graybeal B (2011) Ultra-high performance concrete. U.S. Department of Transportation, Federal Highway Administration, FHWA-HRT-11-038, pp 8

  15. Harajli MH, Hout MA, Jalkh W (1995) Local bond stress-slip behavior of reinforced bars embedded in plain and fibre concrete. ACI Mater J 92:343–353

    Google Scholar 

  16. Henault JM, Quiertant M, Delepine-Lesoille S, Salin J, Moreau G, Taillade F, Benzarti K (2012) Quantitative strain measurement and crack detection in RC structures using a truly distributed fiber optic sensing system. Constr Build Mater 37:916–923

  17. Holschemacher K, Weiße D, Klotz S (2004) Bond of reinforcement in ultra high strength concrete, international symposium on ultra high performance concrete. International symposium on UHPFRC, Kassel, Germany, pp 375–388

  18. Hota S, Naaman AE (1997) Bond stress-slip response of reinforcing bars embedded in FRC matrices under monotonic and cyclic loading. ACI Struct J 94(5):525–537

    Google Scholar 

  19. Jungwirth J (2006) Zum tragverhalten von Zugbeanspruchten Bauteilen aus Ultrahochleistungs-Faserbeton. Thèse de doctorat N\(^{\circ }\)3429, Ecole Polytechnique Fédérale de Lausanne

  20. Khadour A, Baby F, Herrera A, Taillade F, Marchand P, Rivillon P, Simon A, Quiertant M, Toutlemonde F (2013) Distributed strain monitoring of reinforcement bars using optical fibers for SHM, CONSEC13—Seventh international conference on concrete under severe conditions—Environment and Loading, 23–25 September, Nanjing, China

  21. Kim B, Doh JH, Yi CK, Lee JY (2013) Effect of structural fibres on bonding mechanism changes in interface between GFRP bar and concrete. Compos Part B 45:768–779

    Article  Google Scholar 

  22. Leutbecher T (2007) Rissbildung und Zugtragverhalten von mit Stabstahl und Fasern bewehrtem Ultrahochfesten Beton (UHPC). University of Kassel, Thesis

  23. Metelli G, Plizzari A (2014) Influence of the relative rib area on bond behaviour. Mag Concr Res 66(6):274–294

    Article  Google Scholar 

  24. Naaman AE, Reinhardt HW (1996) Characterization of high performance fiber reinforced cement composites -HPFRCC. In: Naaman AE, Reinhardt HW (Eds) High performance fiber reinforced cement composites 2, E&FN Spon, London, pp 1–24

  25. Quiertant M, Baby F, Khadour A, Marchand P, Rivillon P, Billo J, Lapeyrere R, Toutlemonde F, Simon A, Cordier J, Renaud JC (2012) Deformation monitoring of reinforcement bars with a distributed fiber optic sensor for the SHM of reinforced concrete structures. 9th international conference on NDE in relation to structural integrity for nuclear and pressurized components, Seattle, Washington, USA

  26. Reineck KH, Greiner S (2004) Test on ultra-high performance fibre reinforced concrete for designing hot-water tanks and UHPFRC-Shells. International symposium on UHPFRC, Kassel, Germany

  27. Reineck KH, Greiner S (2004) Dichte Heißwasser-Wärmespeicher aus ultrahochfestem faserfeinkornbeton. Forschungsbericht zum BMBF-Vorhaben 0329606 V, research report. Institut für Leichtbau Entwerfen und Konstruieren(ILEK), Universität Stuttgart, Germany

  28. Rehm, G (1961) The fundamentals of bond between steel reinforcement and concrete, Deutscher Ausschuss fur Stahlbeton. Heft 138, Willhelm Ernstand Sohn, Berlin, pp 59

  29. Richard P, Cheyrezy M (1995) Composition of reactive powder concretes. Cement Concr Res 25(7):1501–1511

    Article  Google Scholar 

  30. Rostásy FS, Hartwich K (1988) Bond of deformed reinforcing bar embedded in steel fiber reinforced concrete. Int J Cem Compos Lightweight Concr 10(3):151–158

    Article  Google Scholar 

  31. Saleem MA, Mirmiran A, Xia J, Mackie K (2013) Development length of high-strength steel rebar in ultrahigh performance concrete. J Mater Civil Eng 25(8):991–998

    Article  Google Scholar 

  32. Spasojević A (2008) Structural implications of ultra high performance fibre-reinforced concrete in bridge design”. Thèse de doctorat N\(^{\circ }\) 4051, Ecole Polytechnique Fédérale de Lausanne

  33. Toutlemonde F , Resplendino J (2011) Designing and building with UHPFRC: state of the art and development. ISTE-Wiley, New York

  34. Toutlemonde F, Simon A, Rivillon P, Marchand P, Baby F, Quiertant M, Khadour A, Cordier J, Battesti T (2013) Recent experimental investigations on reinforced UHPFRC for applications in earthquake engineering and retrofitting. UHPFRC 2013—Designing and Building with UHPFRC: from innovation to large-scale realizations, Marseille, France, October 1–3, pp 597–606

  35. Walraven J (2009) High performance fiber reinforced concrete: progress in knowledge and design codes. Mater Struct 42:1247–1260

    Article  Google Scholar 

  36. Yoo DY, Shin HO, Yang JM, Yoon YS (2014) Material and bond properties of ultra high performance fiber reinforced concrete with micro steel fibers. Compos Part B 58:122–133

    Article  Google Scholar 

Download references

Acknowledgments

The works detailed in this paper were carried out within BADIFOPS research project, aiming at developing ductile solutions of UHPFRC structures for earthquake-resistant applications, where optical fibers SHM can be fruitfully applied. BADIFOPS is a French-State sponsored project (2011–2014) within “Design and Build for Sustainable Growth” program of the Civil Engineering Department Unit of the Ministry in charge of Sustainable Growth (Grant no 10 MGC S010). Partners are Eiffage Company, CSTB (research center for buildings), Ifsttar (public works research institute) and Sétra, now CEREMA (Highways Agency).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Marchand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchand, P., Baby, F., Khadour, A. et al. Bond behaviour of reinforcing bars in UHPFRC. Mater Struct 49, 1979–1995 (2016). https://doi.org/10.1617/s11527-015-0628-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-015-0628-0

Keywords

Navigation