Skip to main content
Log in

Daily and seasonal thermal stresses in tilings: a field survey combined with numeric modeling

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This study investigates thermally induced tensile stresses in ceramic tilings. Daily and seasonal thermal cycles, as well as, rare but extreme events, such as a hail-storm striking a heated terrace tiling, were studied in the field and by numerical modeling investigations. The field surveys delivered temperature–time diagrams and temperature profiles across tiling systems. These data were taken as input parameters for modeling the stress distribution in the tiling system in order to detect potential sites for material failure. Dependent on the thermal scenario (e.g., slow heating of the entire structure during morning and afternoon, or a rapid cooling of the tiles by a rain storm) the modeling indicates specific locations with high tensile stresses. Typically regions along the rim of the tiling field showed stresses, which can become critical with respect to the adhesion strength. Over the years, ongoing cycles of thermal expansion–contraction result in material fatigue promoting the propagation of cracks. However, the installation of flexible waterproofing membranes (applied between substrate and tile adhesive) represents an efficient technical innovation to reduce such crack propagation as confirmed by both numerical modeling results and microstructural studies on real systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bühler T, Zurbriggen R, Pieles U, Huwiler L, Raso R (2012) Dynamics of early skin formation of tiling mortars investigated by microscopy and diffuse reflectance infrared Fourier transformed spectroscopy. Cement and Concrete Composites 37:161–170

  2. Felixberger JK (2005) Spannungen im Verbundsystem: Fliese—Verlegemörtel—Untergrund. In: Verein Deutscher Ingenieure VDI (ed) Jahrbuch 2005 Bautechnik. VDI—Verlag GmbH, Düsseldorf, pp 359–390

  3. Gao J, Chung DDL (2002) Damage evolution during freeze–thaw cycling of cement mortar, studied by electrical resistivity measurement. Cem Concr Res 32:1657–1661

    Article  Google Scholar 

  4. Hazaree C, Ceylan H, Wang K (2011) Influences of mixture composition on properties and freeze–thaw resistance of RCC. Constr Build Mater 25:313–319

    Article  Google Scholar 

  5. Herwegh M, Zurbriggen R, Mettier R, Winnefeld F, Kaufmann J, Wetzel A (2015) Hygrical shrinkage stresses in tiling systems: numerical modeling combined with field studies. Cem Concr Compos 35:1–10

    Article  Google Scholar 

  6. Mahaboonpachai T, Kuromiya Y, Matsumoto T (2008) Experimental investigation of adhesion failure of the interface between concrete and polymer-cement mortar in an external wall tile structure under a thermal load. Constr Build Mater 22:2001–2006

    Article  Google Scholar 

  7. Mahaboonpachai T, Matsumoto T, Inaba Y (2010) Investigation of interfacial fracture toughness between concrete and adhesive mortar in an external wall tile structure. Int J Adhes Adhes 30:1–9

    Article  Google Scholar 

  8. Metha PK, Burrows RW (2001) Building durable structures in the 21st century. Concr Int 23:57–63

    Google Scholar 

  9. MeteoSchweiz (2014) http://www.meteoschweiz.admin.ch/web/de/klima/klima_heute.html

  10. Ndon U, Bergeson K (1995) Thermal expansion of concretes: case study in Iowa. J Mater Civ Eng 7:246–251

    Article  Google Scholar 

  11. Passa DS, Sotiropoulou AB, Pandermarakis ZG, Mitsopoulos GD (2012) Thermal and drying cyclic loading for cement based mortars and expanded polystyrene foam layers. Appl Mech Mater 204–208:3648–3651

    Article  Google Scholar 

  12. Sicat E, Gong F, Zhang D, Ueda T (2013) Change of the coefficient of thermal expansion of mortar due to damage by freeze thaw cycles. Journal of Advanced Concrete Technology 11:333–346

    Article  Google Scholar 

  13. Toakley AR, Waters EH (1973) Stresses in ceramic tiling due to expansion and shrinkage effects. Building Sciences 8:269–281

    Article  Google Scholar 

  14. Tonoli GHD, Santos SF, Savastano H, Delvasto S, Mejía de Gutiérrez R, del Lopez de Murphy M (2011) Effects of natural weathering on microstructure and mineral composition of cementitious roofing tiles reinforced with fique fibre. Cement Concr Compos 33:225–232

    Article  Google Scholar 

  15. Weder C (1979) Neuentwickeltes mechanisch-induktives Setzdehungsmessgerät an der EMPA Dübendorf. Material und Technik 2:98–101

    Google Scholar 

  16. Wetzel A, Herwegh M, Zurbriggen R, Winnefeld F (2012) Influence of shrinkage and water transport mechanisms on microstructure and crack formation of tile adhesive mortars. Cem Concr Res 42:39–50

    Article  Google Scholar 

  17. Wetzel A, Zurbriggen R, Herwegh M, Greminger A, Kaufmann J (2012) Long-term study on failure mechanisms of exterior applied tilings. Constr Build Mater 37:335–348

    Article  Google Scholar 

  18. Yiu CY, Ho DCW, Lo SM (2007) Weathering effects on external wall tiling systems. Constr Build Mater 21:594–600

    Article  Google Scholar 

  19. Zentralverband Deutsches Baugewerbe (2005a) Aussenbeläge—Belagskonstruktionen mit Fliesen und Platten ausserhalb von Gebäuden. Merkblatt ZDB

  20. Zentralverband Deutsches Baugewerbe (2005b) Verbundabdichtungen. Merkblatt ZDB

  21. Zurbriggen R, Wetzel A, Greminger A, Kaufmann J, Pass K, Waser H (2009) Outdoor tile damages: a study on critical parameters and characteristic microstructures. Proceedings of the IDMMC two, 30th March 2009, Nuremberg, Germany, pp 18–24

  22. Zurbriggen R, Pass K, Wetzel A (2011) Gut verlegt hält länger. Fliesen und Platten 2:18–21

    Google Scholar 

  23. Zurbriggen R, Herwegh M, Wetzel A (2012) Hygrical stresses in tilings: a combined field, microstructural and numerical modeling study. In: Proceedings of the conference of the chemistry of Construction Materials Division (Fachgruppe Bauchemie, GDCh), Dübendorf, Switzerland, 11–12 Oct 2012, Monographie, 45, pp 103–108

Download references

Acknowledgments

We thank Andrea Greminger, Alexander Wetzel (Univ. of Bern) and Monika Stocker (Akzo Nobel Chemicals AG) for support in the acquisition of field data, Josef Kaufmann (Empa) for advice in temperature data logging and Ralph Mettier (Univ. of Bern) for the introduction in numerical modeling with ABAQUS. Financial support by Swiss Commission for Technology and Innovation is gratefully acknowledged (CTI project No 8605.1 EPRP-IW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Zurbriggen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zurbriggen, R., Herwegh, M. Daily and seasonal thermal stresses in tilings: a field survey combined with numeric modeling. Mater Struct 49, 1917–1933 (2016). https://doi.org/10.1617/s11527-015-0623-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-015-0623-5

Keywords

Navigation