Skip to main content

Compressive strength and elasticity of pure lime mortar masonry

Abstract

The procedure and findings of an experimental campaign for the mechanical characterization of brick masonry with lime mortar joints are presented. The campaign includes the determination of the properties of the constituent materials and of the resulting masonry composite. The masonry consisted of masonry stack bond prisms made of solid clay bricks and two types of pure lime/sand mortars, material combinations which correspond to the vast majority of historical and existing masonry structures. The paper includes a discussion on the ratio between the elastic modulus and the compressive strength of the masonry constituents and the comparison of these ratios with the ones suggested in design codes. The implications of this comparison are discussed in the context of interventions on historical masonry structures using modern and traditional materials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Abbreviations

E u :

Young’s modulus of units

E m :

Young’s modulus of mortar

E c :

Young’s modulus of masonry

f cu :

Uniaxial compressive strength of units

f cm :

Uniaxial compressive strength of mortar

f c,exp :

Experimentally derived compressive strength of masonry

f flex,u :

Flexural strength of units

f tu :

Tensile strength of units

f flex,m :

Flexural strength of mortar

ν u :

Poisson’s ratio of units

h u :

Height of units

l u :

Length of units

t u :

Width of units

h m :

Thickness of mortar bed joint

References

  1. 1.

    Barbosa CS, Lourenço PB, Hanai JB (2010) On the compressive strength prediction for concrete masonry prisms. Mater Struct 43:331–344. doi:10.1617/s11527-009-9492-0

    Article  Google Scholar 

  2. 2.

    Furtmüller T, Adam C (2011) Numerical modeling of the in-plane behavior of historical brick masonry walls. Acta Mech 221:65–77. doi:10.1007/s00707-011-0493-z

    Article  MATH  Google Scholar 

  3. 3.

    Hamid AA, Chukwunenye AO (1986) Compression behavior of concrete masonry prisms. J Struct Eng 112:605–613

    Article  Google Scholar 

  4. 4.

    Kaushik HB, Rai DC, Jain SK (2007) Stress–strain characteristics of clay brick masonry under uniaxial compression. J Mater Civ Eng 19(9):728–739

    Article  Google Scholar 

  5. 5.

    McNary WS, Abrams DP (1985) Mechanics of masonry in compression. J Struct Eng 111:857–870

    Article  Google Scholar 

  6. 6.

    Hossain MM, Ali SS, Azadur Rahman M (1997) Properties of masonry constituents. J Civ Eng Inst Eng Bangladesh CE 28:135–155

    Google Scholar 

  7. 7.

    Mohamad G, Lourenço PB, Roman HR (2007) Mechanics of hollow concrete block masonry prisms under compression: review and prospects. Cem Concr Compos 29:181–192. doi:10.1016/j.cemconcomp.2006.11.003

    Article  Google Scholar 

  8. 8.

    de Oliveira DVC, Lourenço PB, Roca P (2006) Cyclic behaviour of stone and brick masonry under uniaxial compressive loading. Mater Struct 39:247–257. doi:10.1617/s11527-005-9050-3

    Article  Google Scholar 

  9. 9.

    Panizza M, Garbin E, Valluzzi MR, Modena C (2012) Experimental investigation on bond of FRP/SRP applied to masonry prisms. In: 6th International conference on FRP composites in civil engineering, Rome, pp 13–15

  10. 10.

    Sarangapani G, Reddy BVV, Jagadish KS (2005) Brick–mortar bond and masonry compressive strength. J Mater Civ Eng 17(2):229–237

    Article  Google Scholar 

  11. 11.

    Vyas CVU, Reddy BVV (2010) Prediction of solid block masonry prism compressive strength using FE model. Mater Struct 43:719–735. doi:10.1617/s11527-009-9524-9

    Article  Google Scholar 

  12. 12.

    Reddy BVV, Lal R, Nanjunda Rao KS (2009) Influence of joint thickness and mortar-block elastic properties on the strength and stresses developed in soil–cement block masonry. J Mater Civ Eng 21:535–542

    Article  Google Scholar 

  13. 13.

    Vermeltfoort AT, Martens DRW, van Zijl GPAG (2007) Brick–mortar interface effects on masonry under compression. Can J Civ Eng 34:1475–1485. doi:10.1139/L07-067

    Article  Google Scholar 

  14. 14.

    Gumaste KS, Nanjunda Rao KS, Reddy BVV, Jagadish KS (2007) Strength and elasticity of brick masonry prisms and wallettes under compression. Mater Struct 40:241–253. doi:10.1617/s11527-006-9141-9

    Article  Google Scholar 

  15. 15.

    Almeida C, Guedes JP, Arêde A et al (2012) Physical characterization and compression tests of one leaf stone masonry walls. Constr Build Mater 30:188–197. doi:10.1016/j.conbuildmat.2011.11.043

    Article  Google Scholar 

  16. 16.

    Aprile A, Benedetti A, Grassucci F (2001) Assessment of cracking and collapse for old brick masonry columns. J Struct Eng 127:1427–1435

    Article  Google Scholar 

  17. 17.

    Binda L, Fontana A, Frigerio G (1988) Mechanical behaviour of brick masonries derived from unit and mortar characteristics. In: 8th International brick block masonary conference, vol 1, Dublin, pp 205–216

  18. 18.

    Binda L, Pina-Henriques JL, Anzani A et al (2006) A contribution for the understanding of load-transfer mechanisms in multi-leaf masonry walls: testing and modelling. Eng Struct 28:1132–1148

    Article  Google Scholar 

  19. 19.

    Brencich A, Sterpi E (2006) Compressive strength of solid clay brick masonry: calibration of experimental tests and theoretical issues. Struct Anal Hist Constr New Delhi 2006:757–766

    Google Scholar 

  20. 20.

    Domède N, Pons G, Sellier A, Fritih Y (2009) Mechanical behaviour of ancient masonry. Mater Struct 42:123–133. doi:10.1617/s11527-008-9372-z

    Article  Google Scholar 

  21. 21.

    Eslami A, Ronagh HR, Mahini SS, Morshed R (2012) Experimental investigation and nonlinear FE analysis of historical masonry buildings—a case study. Constr Build Mater 35:251–260. doi:10.1016/j.conbuildmat.2012.04.002

    Article  Google Scholar 

  22. 22.

    Ewing BD, Kowalsky MJ (2004) Compressive behavior of unconfined and confined clay brick masonry. J Struct Eng 130:650–661

    Article  Google Scholar 

  23. 23.

    García D, San-José JT, Garmendia L, San-Mateos R (2012) Experimental study of traditional stone masonry under compressive load and comparison of results with design codes. Mater Struct 45:995–1006. doi:10.1617/s11527-011-9812-z

    Article  Google Scholar 

  24. 24.

    Milosevic J, Gago A, Lopes M, Bento R (2012) Experimental tests on rubble masonry specimens—diagonal compression, triplet and compression tests. In: 15th World conference on earthquake enginnering

  25. 25.

    Page AW (1981) The biaxial compressive strength of masonry. In: Proceedings of the Institution of Civil Engineers, pp 893–906

  26. 26.

    Riddington JR, Naom NF (1994) Finite element prediction of masonry compressive strength. Comput Struct 52:113–119

    Article  MATH  Google Scholar 

  27. 27.

    Naraine K, Sinha S (1991) Cyclic behavior of brick masonry under biaxial compression. J Struct Eng 117:1336–1355

    Article  Google Scholar 

  28. 28.

    Binda L, Papayianni I, Toumbakari E, van Hees R (2002) Mechanical tests on mortars and assemblages. Characterisation old mortars with respect to their repair. Final Report. RILEM TC 167-COM, pp 57–76

  29. 29.

    Callebaut K, Elsen J, Van Balen K, Viaene W (2001) Nineteenth century hydraulic restoration mortars in the Saint Michael’s Church (Leuven, Belgium): natural hydraulic lime or cement? Cem Concr Res 31:397–403

    Article  Google Scholar 

  30. 30.

    Degryse P, Elsen J, Waelkens M (2002) Study of ancient mortars from Sagalassos (Turkey) in view of their conservation. Cem Concr Res 32:1457–1463

    Article  Google Scholar 

  31. 31.

    Drdácký M, Masin D, Mekonone MD, Slizkova Z (2008) Compression tests on non-standard historic mortar specimens. In: 1st Historical mortar conference, Lisbon, 24–26 September 2008, pp 24–26

  32. 32.

    Lanas J, Alvarez-Galindo JI (2003) Masonry repair lime-based mortars: factors affecting the mechanical behavior. Cem Concr Res 33:1867–1876. doi:10.1016/S0008-8846(03)00210-2

    Article  Google Scholar 

  33. 33.

    Lanas J, Pérez Bernal JL, Bello Ma, Alvarez-Galindo JI (2004) Mechanical properties of natural hydraulic lime-based mortars. Cem Concr Res 34:2191–2201. doi:10.1016/j.cemconres.2004.02.005

    Article  Google Scholar 

  34. 34.

    Lanas J, Pérez Bernal JL, Bello Ma, Alvarez-Galindo JI (2006) Mechanical properties of masonry repair dolomitic lime-based mortars. Cem Concr Res 36:951–960. doi:10.1016/j.cemconres.2005.10.004

    Article  Google Scholar 

  35. 35.

    Costigan A, Pavía S (2012) Influence of the mechanical properties of lime mortar on the strength of brick masonry. In: 2nd Historic mortars conference, pp 349–360

  36. 36.

    CEN (2005) EN 1996-1-1: rules for reinforced and unreinforced masonry. CEN, Brussels

  37. 37.

    CEN (2002) UNE-EN 772-6—Métodos de ensayo de piezas para fábrica de albañilería—Parte 6: Determinación de la resistencia a flexotracción de las piezas de hormigón de árido para fábrica de albañileria

  38. 38.

    CEN (2011) EN 772-1—Métodos de ensayo de piezzas para fábrica de albañilería—Parte 2: Determinción de la resistencia a compresión

  39. 39.

    CEN (2007) EN 1015-11—methods of test for mortar for masonry—part 11: determination of flexural and compressive strength of hardened mortar

  40. 40.

    Rots JG (1997) Structural masonry: an experimental/numerical basis for practical design rules. CUR Report 171. Taylor & Francis, London

  41. 41.

    Vermeltfoort AT, Pluijm R (1999) Materiaalparameters voor constructief metselwerk. Report 193. CUR, Gouda

  42. 42.

    Atkinson R, Amadei B, Saeb S, Sture S (1989) Response of masonry bed joints in direct shear. J Struct Eng 115:2276–2296

    Article  Google Scholar 

  43. 43.

    Rots JG (1994) Structural masonry: an experimental/numerical basis for practical design rules. Report 171. CUR, Gouda

  44. 44.

    CEN (1999) EN 1052-1—methods of test for masonry: part 1: determination of compressive strength

  45. 45.

    Associação Brasileira de Normas Técnicas (2004) NBR 8522—Concreto—Determinação dos módulos estáticos de elasticidade e de deformação e da curva tensão- deformação

  46. 46.

    CEB-FIP (2012) Model Code 2010, vol 1

  47. 47.

    Tohidi M (2012) Experimental mechanical characterization of historical mortars by windsor pin penetrometer. MSc Dissertation, Department of Strength of Materials and Structural Engineering, Technical University of Catalonia, Barcelona

Download references

Acknowledgments

The present study has been supported by funding procured through the SUBTIS project (Study of the Sensitivity of Urban Buildings to Tunneling Induced Settlements, BIA2009-13233) funded by Ministerio de Educación y Ciencia and the ERDF (European Regional Development Fund).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anastasios Drougkas.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Drougkas, A., Roca, P. & Molins, C. Compressive strength and elasticity of pure lime mortar masonry. Mater Struct 49, 983–999 (2016). https://doi.org/10.1617/s11527-015-0553-2

Download citation

Keywords

  • Lime mortar
  • Brick masonry
  • Compressive strength
  • Young’s modulus
  • Experimental data