Skip to main content

Composition, uses, provenance and stability of rocks and ancient mortars in a Theban Tomb in Luxor (Egypt)

Abstract

The rock-cut tomb–chapel of Djehuty (Luxor, Egypt, 1470 bc) was excavated and restored including a mineralogical, chemical, textural and petrophysical study of mortars and host rocks together with micro-environmental parameter recordings to deduce the techniques used by the ancient Egyptian builders. The host rock is made by alternations of massive, nodular and finely bedded micritic limestone and the tomb was excavated in the stratigraphic section with better mechanical properties. Different types of gypsum and lime mortars were found in the funerary complex: mortar for bedding, exterior render, surface repair and decoration, and interior plaster and coating. Mortars show formulae according to their specific applications and locations. The sources of the raw materials for the mortar reveal a local provenance. Micro-environmental conditions play an important role in the evolution of the mortar pastes, and determine the current characteristics and stability of mortars. Results from this research will make it possible to design mortars compatible with conservation in the funerary complex of Djehuty and to define safe micro-environmental conditions for the preservation of such mortars and paintings.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Manita P, Triantafillou TC (2011) Influence of the design materials on the mechanical and physical properties of repair mortars of historic buildings. Mater Struct 44:1671–1685

    Article  Google Scholar 

  2. 2.

    Van Balen K, Papayianni I, Van Hees R, Binda L, Waldum A (2005) Introduction to requirements for and functions and properties of repair mortars. Mater Struct 38:781–785

    Article  Google Scholar 

  3. 3.

    Válek J, Hughes JJ, Groot C (2012) Historic mortars: characterisation, assessment, conservation and repair, vol 7., RILEM bookseriesSpringer, Berlin, pp 1–12

    Book  Google Scholar 

  4. 4.

    Camuffo D (2014) Microclimate studies for cultural heritage: conservation, restoration and maintenance of indoor and outdoor monuments, 2nd edn. Elsevier, New York

    Google Scholar 

  5. 5.

    Nicholson PT, Shaw I (2006) Ancient Egyptian materials and technology, 4th edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  6. 6.

    Ragaï J, Poyet T, Beurroies I, Rouquerol F, Llewellyn P (2002) Characterising the porous structure of Egyptian mortars using thermoporometry, mercury intrusion porometry and gas adsorption manometry. Stud Surf Sci Catal 144:435–441

    Article  Google Scholar 

  7. 7.

    Lucas A (2003) Ancient Egyptian Materials and Industries, 4th edn. JR Harris, Edward Arnold, London

    Google Scholar 

  8. 8.

    Garcia-Guinea J, Sanchez-Moral S, Correcher V, Sanchez-Muñoz L, Cuezva S, Cremades A, Benavente D, Galan JM (2008) Phosphor plasters of CaSO4: Dy on the courtyard wall of Djehuty’s tomb (Luxor, Egypt). Radiat Meas 43:849–853

    Article  Google Scholar 

  9. 9.

    Mahmoud H (2009) Examination of some inorganic pigments and plaster layers from excavations at Saqqara Area, Egypt: optical microscopy and SEM-EDS microanalysis. E-Conserv Mag 12:38–46

    Google Scholar 

  10. 10.

    Sanchez-Moral S, Martinez-Martinez J, Benavente D, Cuezva S, Fernandez-Cortes A (2011) Mechanical characterization of ancient Egyptian mortars. Key Eng Mater 465:487–490

    Article  Google Scholar 

  11. 11.

    Pinińska J, Attia HR (2003) Use of geomechanical research in the conservation of stone monuments (Maadi Town Temple, Fayoum, Egypt). Geol Quart 47:1–12

    Google Scholar 

  12. 12.

    Hemeda S (2013) Geomechanical investigations for architectural heritage preservation, the Habib Sakakini palace in Cairo, Egypt. Int J Conserv Sci 4:43–52

    Google Scholar 

  13. 13.

    Moussa AMA, Kantiranis N, Voudouris KS, Stratis JA, Ali MF, Christaras V (2009) The impact of soluble salts on the deterioration of Pharaonic and Coptic wall paintings at Al Qrna, Egypt: mineralogy and chemistry. Archaeometry 51:292–308

    Article  Google Scholar 

  14. 14.

    Moussa AB, Kantiranis N, Voudouris KS, Stratis JA, Ali MF, Christaras V (2009) Diagnosis of weathered Coptic wall paintings in the Wadi El Natrun region. Egypt J Cult Herit 10:152–157

    Article  Google Scholar 

  15. 15.

    Maekawa S (1993) Environmental monitoring at the Tomb of Nefertari. In: Corzo MA, Afshar M (eds) Art and eternity: the Nefertari wall paintings conservation project, 1986–1992. Getty, Los Angeles, CA

    Google Scholar 

  16. 16.

    Papayianni I, Pachta V, Stefanidou M (2013) Analysis of ancient mortars and design of compatible repair mortars: the case study of Odeion of the archaeological site of Dion. Constr Build Mater 40:84–92

    Article  Google Scholar 

  17. 17.

    Bartz W, Rogó J, Rogal R, Cupa A, Szroeder P (2012) Characterization of historical lime plasters by combined non-destructive and destructive tests: the case of the sgraffito in Bonów (SW Poland). Constr Build Mater 30:439–446

    Article  Google Scholar 

  18. 18.

    Rossi-Doria PR (1990) Report on the RILEM Workshop “Ancient mortars and mortars for restoration” taken place in Ravello (Italy), 9–11 November, 1988. Mater Struct 23:235–238

    Article  Google Scholar 

  19. 19.

    Groot C, Ashall G, Hughes JJ (2004) Characterization of old mortars with respect to their repair. Final report of RILEM TC 167-COM. RILEM Publications SARL, Bagneux, France

    Google Scholar 

  20. 20.

    Hughes JJ (2012) RILEM TC 203-RMH: repair mortars for historic masonry. The role of mortar in masonry: an introduction to requirements for the design of repair mortars. Mater Struct 45:1287–1294

    Article  Google Scholar 

  21. 21.

    Moropoulou A, Bakolas A, Anagnostopoulou S (2005) Composite materials in ancient structures. Cem Concr Compos 27:295–300

    Article  Google Scholar 

  22. 22.

    Galan JM (2009) Early Investigations in the tomb–chapel of Djehuty (TT 11). In: Magee D, Bourriau J, Quirke S (eds) Sitting beside Lepsius: studies in honour of Jaromir Malek at the Griffith Institute. OLA 185:155–181

  23. 23.

    Galán JM (2013) The book of the dead in the burial chamber of Djehuty (TT 11). Egypt Archaeol 42:21–24

    Google Scholar 

  24. 24.

    Said R (1990) The geology of Egypt. A.A. Balkema, Rotterdam

    Google Scholar 

  25. 25.

    Tawfik HA, Zahran EK, Abdel-Hameed AT, Maejima W (2011) Mineralogy, petrography, and biostratigraphy of the Lower Eocene succession at Gebel El-Qurn, West Luxor, Southern Egypt. Arab J Geosci 4:517–534

    Article  Google Scholar 

  26. 26.

    Shaaban MN (2004) Diagenesis of the lower Eocene Thebes formation Gebel Rewagen area, Eastern Desert, Egypt. Sedim Geol 165:53–65

    Article  Google Scholar 

  27. 27.

    Wüst RAJ, McLane J (2000) Rock derioration in the royal tomb of Seti I valley of the Kings, Luxor, Egypt. Eng Geol 58:163–190

    Article  Google Scholar 

  28. 28.

    National Climatic Data Center/NESDIS/NOAA/U.S. (2003): U.S.A.F. DATSAV3 Surface Observations, 1901-continuing. Research data archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory. http://rda.ucar.edu/datasets/ds463.2/

  29. 29.

    Benavente D, Cultrone G, Gomez-Heras M (2008) The combined influence of mineralogy, hydric and thermal properties in the durability of porous building stones. Eur J Min 20:673–685

    Article  Google Scholar 

  30. 30.

    Nakhla SM, Abd El Kader M (2006) Mortars and stones for the restoration of masonry works in the Sphinx. In: Daoud K, Abd el-Fatah S, editors. The world of ancient Egypt. Essays in Honor of Ahmed Abd el-Qader el-Sawi. Supplément aux Annales du Service des Antiquités de l’Egypte, Cahier no, 35. pp 207–215

  31. 31.

    Blanc P, Baumer A, Cesbron F, Ohnenstetter D, Panczer G, Remond G (2000) Systematic cathodoluminescence spectral analysis of synthetic doped minerals: anhydrite, apatite, calcite, fluorite, scheelite and zircon. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Berlin, pp 127–160

    Chapter  Google Scholar 

  32. 32.

    Benavente D, Sanchez-Moral S, Cortes-Fernandez A, Cañaveras JC, Elez J, Saiz-Jimenez C (2011) Salt damage and microclimate in the Postumius Tomb, Roman Necropolis of Carmona, Spain. Environ Earth Sci 63:1529–1543

    Article  Google Scholar 

  33. 33.

    Charola AE, Pühringer J, Steiger M (2007) Gypsum: a review of its role in the deterioration of building materials. Environ Geol 52:207–220

    Article  Google Scholar 

  34. 34.

    Tantawy AAAM (2006) Calcareous nannofossils of the Paleocene–Eocene transition at Qena region, central Nile Valley, Egypt. Micropaleontol 52:193–222

    Article  Google Scholar 

  35. 35.

    Aubry MP, Salem R (2012) The Dababiya Core: a window into Paleocene to early Eocene depositional history in Egypt based on coccolith. Stratigr 9:287–346

    Google Scholar 

  36. 36.

    Sanchez-Moral S, Luque L, Cañaveras JC, Soler V, Garcia-Guinea J, Aparicio A (2005) Lime–pozzolana mortars in Roman catacombs: composition, structures and restoration. Cem Concr Res 35:1555–1565

    Article  Google Scholar 

Download references

Acknowledgments

The archaeological field works in Egypt were supported by the CajaMadrid Foundation (Madrid, Spain). The expedition is now sponsored by Union Fenosa Gas and the Spanish Ministry of Culture.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Garcia-Guinea.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cuezva, S., Garcia-Guinea, J., Fernandez-Cortes, A. et al. Composition, uses, provenance and stability of rocks and ancient mortars in a Theban Tomb in Luxor (Egypt). Mater Struct 49, 941–960 (2016). https://doi.org/10.1617/s11527-015-0550-5

Download citation

Keywords

  • Ancient Egyptian material
  • Mortar
  • Micro-environment
  • Theban tomb
  • Gypsum
  • Anhydrite