Materials and Structures

, Volume 49, Issue 3, pp 941–960 | Cite as

Composition, uses, provenance and stability of rocks and ancient mortars in a Theban Tomb in Luxor (Egypt)

  • S. Cuezva
  • J. Garcia-Guinea
  • A. Fernandez-Cortes
  • D. Benavente
  • J. Ivars
  • J. M. Galan
  • S. Sanchez-Moral
Original Article


The rock-cut tomb–chapel of Djehuty (Luxor, Egypt, 1470 bc) was excavated and restored including a mineralogical, chemical, textural and petrophysical study of mortars and host rocks together with micro-environmental parameter recordings to deduce the techniques used by the ancient Egyptian builders. The host rock is made by alternations of massive, nodular and finely bedded micritic limestone and the tomb was excavated in the stratigraphic section with better mechanical properties. Different types of gypsum and lime mortars were found in the funerary complex: mortar for bedding, exterior render, surface repair and decoration, and interior plaster and coating. Mortars show formulae according to their specific applications and locations. The sources of the raw materials for the mortar reveal a local provenance. Micro-environmental conditions play an important role in the evolution of the mortar pastes, and determine the current characteristics and stability of mortars. Results from this research will make it possible to design mortars compatible with conservation in the funerary complex of Djehuty and to define safe micro-environmental conditions for the preservation of such mortars and paintings.


Ancient Egyptian material Mortar Micro-environment Theban tomb Gypsum Anhydrite 



The archaeological field works in Egypt were supported by the CajaMadrid Foundation (Madrid, Spain). The expedition is now sponsored by Union Fenosa Gas and the Spanish Ministry of Culture.


  1. 1.
    Manita P, Triantafillou TC (2011) Influence of the design materials on the mechanical and physical properties of repair mortars of historic buildings. Mater Struct 44:1671–1685CrossRefGoogle Scholar
  2. 2.
    Van Balen K, Papayianni I, Van Hees R, Binda L, Waldum A (2005) Introduction to requirements for and functions and properties of repair mortars. Mater Struct 38:781–785CrossRefGoogle Scholar
  3. 3.
    Válek J, Hughes JJ, Groot C (2012) Historic mortars: characterisation, assessment, conservation and repair, vol 7., RILEM bookseriesSpringer, Berlin, pp 1–12CrossRefGoogle Scholar
  4. 4.
    Camuffo D (2014) Microclimate studies for cultural heritage: conservation, restoration and maintenance of indoor and outdoor monuments, 2nd edn. Elsevier, New YorkGoogle Scholar
  5. 5.
    Nicholson PT, Shaw I (2006) Ancient Egyptian materials and technology, 4th edn. Cambridge University Press, Cambridge, UKGoogle Scholar
  6. 6.
    Ragaï J, Poyet T, Beurroies I, Rouquerol F, Llewellyn P (2002) Characterising the porous structure of Egyptian mortars using thermoporometry, mercury intrusion porometry and gas adsorption manometry. Stud Surf Sci Catal 144:435–441CrossRefGoogle Scholar
  7. 7.
    Lucas A (2003) Ancient Egyptian Materials and Industries, 4th edn. JR Harris, Edward Arnold, LondonGoogle Scholar
  8. 8.
    Garcia-Guinea J, Sanchez-Moral S, Correcher V, Sanchez-Muñoz L, Cuezva S, Cremades A, Benavente D, Galan JM (2008) Phosphor plasters of CaSO4: Dy on the courtyard wall of Djehuty’s tomb (Luxor, Egypt). Radiat Meas 43:849–853CrossRefGoogle Scholar
  9. 9.
    Mahmoud H (2009) Examination of some inorganic pigments and plaster layers from excavations at Saqqara Area, Egypt: optical microscopy and SEM-EDS microanalysis. E-Conserv Mag 12:38–46Google Scholar
  10. 10.
    Sanchez-Moral S, Martinez-Martinez J, Benavente D, Cuezva S, Fernandez-Cortes A (2011) Mechanical characterization of ancient Egyptian mortars. Key Eng Mater 465:487–490CrossRefGoogle Scholar
  11. 11.
    Pinińska J, Attia HR (2003) Use of geomechanical research in the conservation of stone monuments (Maadi Town Temple, Fayoum, Egypt). Geol Quart 47:1–12Google Scholar
  12. 12.
    Hemeda S (2013) Geomechanical investigations for architectural heritage preservation, the Habib Sakakini palace in Cairo, Egypt. Int J Conserv Sci 4:43–52Google Scholar
  13. 13.
    Moussa AMA, Kantiranis N, Voudouris KS, Stratis JA, Ali MF, Christaras V (2009) The impact of soluble salts on the deterioration of Pharaonic and Coptic wall paintings at Al Qrna, Egypt: mineralogy and chemistry. Archaeometry 51:292–308CrossRefGoogle Scholar
  14. 14.
    Moussa AB, Kantiranis N, Voudouris KS, Stratis JA, Ali MF, Christaras V (2009) Diagnosis of weathered Coptic wall paintings in the Wadi El Natrun region. Egypt J Cult Herit 10:152–157CrossRefGoogle Scholar
  15. 15.
    Maekawa S (1993) Environmental monitoring at the Tomb of Nefertari. In: Corzo MA, Afshar M (eds) Art and eternity: the Nefertari wall paintings conservation project, 1986–1992. Getty, Los Angeles, CAGoogle Scholar
  16. 16.
    Papayianni I, Pachta V, Stefanidou M (2013) Analysis of ancient mortars and design of compatible repair mortars: the case study of Odeion of the archaeological site of Dion. Constr Build Mater 40:84–92CrossRefGoogle Scholar
  17. 17.
    Bartz W, Rogó J, Rogal R, Cupa A, Szroeder P (2012) Characterization of historical lime plasters by combined non-destructive and destructive tests: the case of the sgraffito in Bonów (SW Poland). Constr Build Mater 30:439–446CrossRefGoogle Scholar
  18. 18.
    Rossi-Doria PR (1990) Report on the RILEM Workshop “Ancient mortars and mortars for restoration” taken place in Ravello (Italy), 9–11 November, 1988. Mater Struct 23:235–238CrossRefGoogle Scholar
  19. 19.
    Groot C, Ashall G, Hughes JJ (2004) Characterization of old mortars with respect to their repair. Final report of RILEM TC 167-COM. RILEM Publications SARL, Bagneux, FranceGoogle Scholar
  20. 20.
    Hughes JJ (2012) RILEM TC 203-RMH: repair mortars for historic masonry. The role of mortar in masonry: an introduction to requirements for the design of repair mortars. Mater Struct 45:1287–1294CrossRefGoogle Scholar
  21. 21.
    Moropoulou A, Bakolas A, Anagnostopoulou S (2005) Composite materials in ancient structures. Cem Concr Compos 27:295–300CrossRefGoogle Scholar
  22. 22.
    Galan JM (2009) Early Investigations in the tomb–chapel of Djehuty (TT 11). In: Magee D, Bourriau J, Quirke S (eds) Sitting beside Lepsius: studies in honour of Jaromir Malek at the Griffith Institute. OLA 185:155–181Google Scholar
  23. 23.
    Galán JM (2013) The book of the dead in the burial chamber of Djehuty (TT 11). Egypt Archaeol 42:21–24Google Scholar
  24. 24.
    Said R (1990) The geology of Egypt. A.A. Balkema, RotterdamGoogle Scholar
  25. 25.
    Tawfik HA, Zahran EK, Abdel-Hameed AT, Maejima W (2011) Mineralogy, petrography, and biostratigraphy of the Lower Eocene succession at Gebel El-Qurn, West Luxor, Southern Egypt. Arab J Geosci 4:517–534CrossRefGoogle Scholar
  26. 26.
    Shaaban MN (2004) Diagenesis of the lower Eocene Thebes formation Gebel Rewagen area, Eastern Desert, Egypt. Sedim Geol 165:53–65CrossRefGoogle Scholar
  27. 27.
    Wüst RAJ, McLane J (2000) Rock derioration in the royal tomb of Seti I valley of the Kings, Luxor, Egypt. Eng Geol 58:163–190CrossRefGoogle Scholar
  28. 28.
    National Climatic Data Center/NESDIS/NOAA/U.S. (2003): U.S.A.F. DATSAV3 Surface Observations, 1901-continuing. Research data archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory.
  29. 29.
    Benavente D, Cultrone G, Gomez-Heras M (2008) The combined influence of mineralogy, hydric and thermal properties in the durability of porous building stones. Eur J Min 20:673–685CrossRefGoogle Scholar
  30. 30.
    Nakhla SM, Abd El Kader M (2006) Mortars and stones for the restoration of masonry works in the Sphinx. In: Daoud K, Abd el-Fatah S, editors. The world of ancient Egypt. Essays in Honor of Ahmed Abd el-Qader el-Sawi. Supplément aux Annales du Service des Antiquités de l’Egypte, Cahier no, 35. pp 207–215Google Scholar
  31. 31.
    Blanc P, Baumer A, Cesbron F, Ohnenstetter D, Panczer G, Remond G (2000) Systematic cathodoluminescence spectral analysis of synthetic doped minerals: anhydrite, apatite, calcite, fluorite, scheelite and zircon. In: Pagel M, Barbin V, Blanc P, Ohnenstetter D (eds) Cathodoluminescence in geosciences. Springer, Berlin, pp 127–160CrossRefGoogle Scholar
  32. 32.
    Benavente D, Sanchez-Moral S, Cortes-Fernandez A, Cañaveras JC, Elez J, Saiz-Jimenez C (2011) Salt damage and microclimate in the Postumius Tomb, Roman Necropolis of Carmona, Spain. Environ Earth Sci 63:1529–1543CrossRefGoogle Scholar
  33. 33.
    Charola AE, Pühringer J, Steiger M (2007) Gypsum: a review of its role in the deterioration of building materials. Environ Geol 52:207–220CrossRefGoogle Scholar
  34. 34.
    Tantawy AAAM (2006) Calcareous nannofossils of the Paleocene–Eocene transition at Qena region, central Nile Valley, Egypt. Micropaleontol 52:193–222CrossRefGoogle Scholar
  35. 35.
    Aubry MP, Salem R (2012) The Dababiya Core: a window into Paleocene to early Eocene depositional history in Egypt based on coccolith. Stratigr 9:287–346Google Scholar
  36. 36.
    Sanchez-Moral S, Luque L, Cañaveras JC, Soler V, Garcia-Guinea J, Aparicio A (2005) Lime–pozzolana mortars in Roman catacombs: composition, structures and restoration. Cem Concr Res 35:1555–1565CrossRefGoogle Scholar

Copyright information

© RILEM 2015

Authors and Affiliations

  • S. Cuezva
    • 1
  • J. Garcia-Guinea
    • 1
  • A. Fernandez-Cortes
    • 1
  • D. Benavente
    • 2
  • J. Ivars
    • 3
  • J. M. Galan
    • 3
  • S. Sanchez-Moral
    • 1
  1. 1.Museo Nacional de Ciencias Naturales (CSIC)MadridSpain
  2. 2.Departamento Ciencias de la Tierra y del Medio Ambiente Unidad Asociada UA-CSICUniversidad de AlicanteAlicanteSpain
  3. 3.Centro de Ciencias Humanas y Sociales (CSIC)MadridSpain

Personalised recommendations