Advertisement

Materials and Structures

, Volume 49, Issue 1–2, pp 577–595 | Cite as

Assessment of fibre content and 3D profile in cylindrical SFRC specimens

  • Sergio H. P. Cavalaro
  • Rubén López-Carreño
  • Josep María Torrents
  • Antonio Aguado
  • Pablo Juan-García
Original Article

Abstract

The inductive method from Torrents et al. (Mater Struct 45(10):1577–1592, 2012, 1) is used to assess the fibre content and orientation in steel fibre reinforced concrete. Despite several advantages, the method presents limitations. On one hand, it was conceived for cubic specimens, which complicates its application in existing structures given the difficulty to obtain cubic cores. On the other hand, it only shows the fibre orientation in the three axes perpendicular to the faces of the specimen, being impossible to derive the orientation in other directions with these results. Moreover, it only gives average values without providing any information on the scatter or probabilistic distribution of the fibre orientation—a parameter that may be essential to for design and to explain differences in the behaviour of concretes apparently with the same average fibre distribution. The objective of this paper is to propose an assessment of the fibre content and orientation profile using the inductive method and cylindrical specimens. First, a modification of the method is proposed. Then, new equations are deducted to generalize the test to samples with different shapes and to assess the anisotropy level as well as the directions with the maximum and the minimum fibre contribution. An extensive experimental program and FEM simulations are performed to validate and determine the accuracy of the formulation developed. The results show that the execution of only one additional measurement per specimen is enough to determine the fibre probabilistic profile in all in-plane directions with a high accuracy.

Keywords

SFRC Inductive method Fibre content Orientation profile Quality control 

Notes

Acknowledgments

The authors thank PROMSA for the support during the experimental program and the Ministerio de Economía y Competitividad for the financial support provided within the project FIBHAC (IPT-2011-1613-420000).

References

  1. 1.
    Torrents JM, Blanco A, Pujadas P, Aguado A, Juan-García P, Sánchez-Moragues MÁ (2012) Inductive method for assessing the amount and orientation of steel fibers in concrete. Mater Struct 45(10):1577–1592CrossRefGoogle Scholar
  2. 2.
    Cavalaro SHP, López R, Torrents JM, Aguado A (2014) Improved assessment of fibre content and orientation with inductive method in SFRC. Mater Struct 45(10):1577–1592Google Scholar
  3. 3.
    Serna P, Arango S, Ribeiro T, Núñez AM, Garcia-Taengua E (2009) Structural cast-in-place SFRC: technology, control criteria and recent applications in Spain. Mater Struct 42(9):1233–1246CrossRefGoogle Scholar
  4. 4.
    di Prisco M, Plizzari G, Vandewalle L (2009) Fibre reinforced concrete: new design perspectives. Mater Struct 42(9):1261–1281CrossRefGoogle Scholar
  5. 5.
    CEN. EN 14651:2005 (2005) Test method for metallic fibrered concrete—measuring the flexural tensile strength (limit of proportionality (LOP), residual). European Committee for Standardization, BrusselsGoogle Scholar
  6. 6.
    RILEM TC 162-TDF (2003) Test and design methods for steel fibre reinforced concrete-σ–ε design method: final recommendation. Mater Struct 36(262):560–567Google Scholar
  7. 7.
    IBN. NBN B 15‐238 (1992) Essais des bétons renforcés de fibres—Essai de flexion sur éprouvettes prismatiques. Institut Belge de Normalisation Brussels, BrusselsGoogle Scholar
  8. 8.
    Blanco A, Pujadas P, de la Fuente A, Cavalaro S, Aguado A (2015) Assessment of the fibre orientation factor in SFRC slabs. Composites B 68:343–354CrossRefGoogle Scholar
  9. 9.
    Ferrara L, Meda A (2006) Relationships between fibre distribution, workability and the mechanical properties of SFRC applied to precast roof elements. Mater Struct 39(4):411–420CrossRefGoogle Scholar
  10. 10.
    Ferrara L, Faifer M, Toscani S (2012) A magnetic method for non destructive monitoring of fiber dispersion and orientation in steel fiber reinforced cementitious composites—part 1: method calibration. Mater Struct 45(4):575–589CrossRefGoogle Scholar
  11. 11.
    Cavalaro S, Aguado A (2014) Intrinsic scatter of FRC: an alternative philosophy to estimate characteristic values. Mater Struct (Published online), 30 Sep 2014. doi: 10.1617/s11527-014-0420-6
  12. 12.
    Laranjeira de Oliveira F (2010) Design-oriented constitutive model for steel fiber reinforced concrete. PhD Thesis, Universitat Politècnica de CatalunyaGoogle Scholar
  13. 13.
    CEB-FIB (2010) Model Code. Comité Euro-International du Beton-Federation International de la Precontraint, ParisGoogle Scholar
  14. 14.
    Pujadas P, Blanco A, Cavalaro SHP, de la Fuente A, Aguado A (2014) Multidirectional double punch test to assess the post-cracking behaviour and fibre orientation of FRC. Constr Build Mater 58:214–224CrossRefGoogle Scholar
  15. 15.
    Polder D, Van Santeen JH (1946) The effective permeability of mixtures of solids. Physica 12(5):257–271CrossRefGoogle Scholar
  16. 16.
    Sihvola AH, Lindell IV (1992) Effective permeability of mixtures. Progr Electromagn Res 6:153–180Google Scholar
  17. 17.
    Faifer M, Ferrara L, Ottoboni R, Toscani S (2013) Low frequency electrical and magnetic methods for non-destructive analysis of fiber dispersion in fiber reinforced cementitious composites: an overview. Sensors 13(1):1300–1318CrossRefGoogle Scholar
  18. 18.
    Maturana A, Sanchez R, Canales J, Orbe A, Ansola R, Veguería E (2010) Technical economic analysis of steel fibre reinforced concrete flag slabs. A real building application. In: XXXVII IAHS World Congress on HousingGoogle Scholar
  19. 19.
    Orbe A, Cuadrado J, Losada R, Rojí E (2012) Framework for the design and analysis of steel fiber reinforced self-compacting concrete structures. Constr Build Mater 35:676–686CrossRefGoogle Scholar
  20. 20.
    Orbe A, Rojí E, Losada R, Cuadrado J (2014) Calibration patterns for predicting residual strengths of steel fibre reinforced concrete (SFRC). Compos Part B-Eng 58:408–417CrossRefGoogle Scholar
  21. 21.
    de la Fuente A, Pujadas P, Blanco A, Aguado A (2011) Experiences in Barcelona with the use of fibres in segmental linings. Tunn Undergr Space Technol 27(1):60–71CrossRefGoogle Scholar
  22. 22.
    de la Fuente A, Escariz RC, de Figueiredo AD, Molins C, Aguado A (2012) A new design method for steel fibre reinforced concrete pipes. Constr Build Mater 30:547–555CrossRefGoogle Scholar
  23. 23.
    Pujadas P, Blanco A, de la Fuente A, Aguado A (2013) Cracking behavior of FRC slabs with traditional reinforcement. Mater Struct 45(10):1577–1592Google Scholar
  24. 24.
    Pujadas P, Blanco A, Cavalaro SHP, Aguado A (2014) Plastic fibres as the only reinforcement for flat suspended slabs: experimental investigation and numerical simulation. Constr Build Mater 57:92–104CrossRefGoogle Scholar
  25. 25.
    Laranjeira F, Grünewald S, Walraven J, Blom C, Molins C, Aguado A (2011) Characterization of the orientation profile of steel fiber reinforced concrete. Mater Struct 44(6):1093–1111CrossRefGoogle Scholar
  26. 26.
    Laranjeira F, Aguado A, Molins C, Grünewald S, Walraven J, Cavalaro S (2012) Framework to predict the orientation of fibers in FRC: a novel philosophy. Cem Concr Res 42(6):752–768CrossRefGoogle Scholar
  27. 27.
    Grünewald S (2004) Performance-based design of selfcompacting fibre reinforced concrete. PhD Thesis, Delft University of TechnologyGoogle Scholar
  28. 28.
    Kameswara Rao CVS (1979) Effectiveness of random fibres in composites. Cem Concr Res 9(6):685–693CrossRefGoogle Scholar
  29. 29.
    Soroushian P, Lee CD (1990) Distribution and orientation of fibers in steel fiber reinforced concrete. ACI Mater J 87(5):433–439Google Scholar
  30. 30.
    Martinie L, Roussel N (2011) Simple tools for fiber orientation prediction in industrial practice. Cem Concr Res 41(10):993–1000CrossRefGoogle Scholar

Copyright information

© RILEM 2015

Authors and Affiliations

  • Sergio H. P. Cavalaro
    • 1
  • Rubén López-Carreño
    • 1
  • Josep María Torrents
    • 2
  • Antonio Aguado
    • 1
  • Pablo Juan-García
    • 2
  1. 1.Departamento de Ingeniería de la Construcción, ETSECCPBUniversidad Politécnica de Cataluña, BarcelonaTechBarcelonaSpain
  2. 2.Departamento de Ingeniería Electrónica, EELUniversidad Politécnica de Cataluña, BarcelonaTechBarcelonaSpain

Personalised recommendations