Skip to main content

Advertisement

Log in

Effect of compaction energy on physical and mechanical performance of bitumen emulsion mortar

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

An implementation of innovative material concepts like composites of bitumen emulsion and cement is crucial to increase the environmental sustainability of pavement construction industry. Although, newly developed method for characterising the influence of bitumen emulsion on the asphalt mixture performance significantly facilitates the evaluation of such composites, there is still a potential for its improvement. The research objective was to evaluate the effect of compaction energy on the performance of the reduced-size cylindrical bitumen emulsion mortar specimens and select the most suitable compaction pattern to be adopted as a standard procedure. Different compaction energy was applied by varying the static compaction conditions, i.e. force and time-related parameters, and the effect on the mechanical properties was determined by indirect tensile testing. The results showed the substantial influence of the compaction energy on the resulting mechanical properties. The primary causes for this were the changes in the volumetric structure of the specimens at lower forces and shorter time of compaction, and the micro-damage by destruction of the early bonding at higher forces and longer time of compaction. Contrary to this, the evaluation of the loss of water by evaporation concerning the cement hydration did not show any clear implication. This emphasised the need to continue the research on the fundamental understanding of the influence of cement hydration on the distribution of the water phase in the mixtures with bitumen emulsion over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Airey GD, Collop AC (2014) Mechanical and structural assessment of laboratory- and field-compacted asphalt mixtures. Int J Pavement Eng. doi:10.1080/10298436.2014.925551

    Google Scholar 

  2. Airey GD, Hunter AE, Collop AC (2008) The effect of asphalt mixture gradation and compaction energy on aggregate degradation. Constr Build Mater 22(5):972–980

    Article  Google Scholar 

  3. Al Nageim H, Al-Busaltan SF, Atherton W, Sharples G (2012) A comparative study for improving the mechanical properties of cold bituminous emulsion mixtures with cement and waste materials. Constr Build Mater 36:743–748

    Article  Google Scholar 

  4. Al-Khateeb GG, Al-Akhras NM (2011) Properties of Portland cement-modified asphalt binder using Superpave tests. Constr Build Mater 25:926–932

    Article  Google Scholar 

  5. Association Française de Normalisation (2004) NF P98-251-4. Tests relating to pavements—static tests on bituminous mixtures—Part 4: modified DURIEZ test on bitumen emulsion based cold mix asphalts

  6. Bentz DP (2008) A review of early-age properties of cement-based materials. Cem Concr Res 38:196–204

    Article  Google Scholar 

  7. Brouwers HJH (2004) The work of powers and Brownyard revisited: Part 1. Cem Concr Res 34:1697–1716

    Article  Google Scholar 

  8. Brouwers HJH (2005) The work of powers and Brownyard revisited: Part 2. Cem Concr Res 35:1922–1936

    Article  Google Scholar 

  9. Çakır Ö, Aköz F (2008) Effect of curing conditions on the mortars with and without GGBFS. Constr Build Mater 22:308–314

    Article  Google Scholar 

  10. Deutsches Institut für Normung (2002) DIN EN 12697-29. Bituminous mixtures — Test method for hot mix asphalt — Part 29: Determination of the dimensions of a bituminous specimen

  11. Deutsches Institut für Normung (2003) DIN EN 12697-23. Bituminous mixtures—test methods for hot mix asphalt—Part 23: determination of the indirect tensile strength of bituminous specimens

  12. Deutsches Institut für Normung (2005) DIN EN 196-1. Methods of testing cement—Part 1: Determination of strength

  13. Deutsches Institut für Normung (2009) DIN EN 12390-2. Testing hardened concrete—Part 2: Making and curing specimens for strength tests

  14. Deutsches Institut für Normung (2011) DIN EN 197-1. Cement—Part 1: Composition, specifications and conformity criteria for common cements

  15. Deutsches Institut für Normung (2013) DIN EN 13808. Bitumen and bituminous binders—Framework for specifying cationic bituminous emulsions

  16. Di Benedetto H, Partl MN, Francken L, La Roche De, Saint André C (2001) Stiffness testing for bituminous mixtures. Mater Struct 34(2):66–70

    Article  Google Scholar 

  17. Du S (2014) Interaction mechanism of cement and asphalt emulsion in asphalt emulsion mixtures. Mater Struct 47(7):1149–1159

    Article  Google Scholar 

  18. Fang X, Garcia A, Winnefeld F, Partl MN, Lura P (2014) Impact of rapid-hardening cements on mechanical properties of Cement Bitumen Emulsion Asphalt. Materials and Structures (submitted and is being reviewed)

  19. Fazhou W, Yunpeng L, Shuguang H (2013) Effect of early cement hydration on the chemical stability of asphalt emulsion. Constr Build Mater 42:146–151

    Article  Google Scholar 

  20. Forschungsgesellschaft für Straßen- und Verkehrswesen (2005) M KRC. Merkblatt für Kaltrecycling in situ im Straßenoberbau (FGSV-Nr. 636)

  21. Forschungsgesellschaft für Straßen- und Verkehrswesen (2007a) M VB-K. Merkblatt für die Verwendung von pechhaltigen Straßenausbaustoffen und von Asphaltgranulat in bitumengebundenen Tragschichten und durch Kaltaufbereitung in Mischanlagen (FGSV-Nr. 636)

  22. Forschungsgesellschaft für Straßen- und Verkehrswessen (2007b) TL BE-StB 07. Technische Lieferbedingungen für Bitumenemulsionen (FGSV-Nr. 793)

  23. Furlong S, James A, Kalinowski E, Thompson M (1999) Water enclosed within the droplets of bitumen emulsions and its relation to viscosity changes during storage. Colloids Surf A 152:147–153

    Article  Google Scholar 

  24. García A, Lura P, Partl MN, Jerjen I (2013) Influence of cement content and environmental humidity on asphalt emulsion and cement composites performance. Mater Struct 46(8):1275–1289

    Article  Google Scholar 

  25. Gaudefroy V, Wendling L, Odie L, Fabre JC, de La Roche C, Hornych P, Dubois V (2008) Laboratory characterization of cold mix treated with bitumen emulsion. In: Proceedings of the Eurasphalt & Eurobitume Congress in Copenhagen in 2008

  26. Hartman AM, Gilchrist MD, Walsh G (2001) Effect of mixture compaction on indirect tensile stiffness and fatigue. J Transp Eng 127(5):370–378

    Article  Google Scholar 

  27. Hofko B, Blab R, Alisov A (2014) Influence of compaction direction on performance characteristics of roller-compacted HMA specimens. Int J Pavement Eng. doi:10.1080/10298436.2014.925550

    Google Scholar 

  28. Hu S, Zhang Y, Wang F (2012) Effect of temperature and pressure on the degradation of cement asphalt mortar exposed to water. Constr Build Mater 34:570–574

    Article  Google Scholar 

  29. Hunter AE, McGreavy L, Airey GD (2009) Effect of compaction mode on the mechanical performance and variability of asphalt mixtures. J Transp Eng 135(11):839–851

    Article  Google Scholar 

  30. Ivanov IB, Danov KD, Kralchevsky PA (1999) Flocculation and coalescence of micron-size emulsion droplets. Colloids Surf A 152:161–182

    Article  Google Scholar 

  31. Kong X-M, Liu Y-L, Zhang Y-R, Zhang Z-L, Yan P-Y, Bai Y (2014) Influences of temperature on mechanical properties of cement asphalt mortars. Mater Struct 47(1–2):285–292

    Article  Google Scholar 

  32. Lesueur D (2009) The colloidal structure of bitumen: consequences on the rheology and on the mechanisms of bitumen modification. Adv Colloid Interface Sci 145(1–2):42–82

    Article  Google Scholar 

  33. Leutner R, Lorenzl H, Schmoeckel K (2006) Stoffmodelle zur Voraussage des Verformungswiderstandes und Ermüdungsverhaltens von Asphaltbefestigungen. Bergisch Gladbach: Bundesanstalt für Straßenwesen, Heft S45

  34. Lin F, Meyer C (2009) Hydration kinetics modeling of Portland cement considering the effects of curing temperature and applied pressure. Cem Concr Res 39:255–265

    Article  Google Scholar 

  35. Loeber L, Muller G, Morel J, Sutton O (1998) Bitumen in colloid science: a chemical, structural and rheological approach. Fuel 77(13):1443–1450

    Article  Google Scholar 

  36. Lu C-T, Kuo M-F, Shen D-H (2009) Composition and reaction mechanism of cement–asphalt mastic. Constr Build Mater 23:2580–2585

    Article  Google Scholar 

  37. Ma C-C, Hung K-M (2008) Exact full-field analysis of strain and displacement for circular disks subjected to partially distributed compressions. Int J Mech Sci 50(2):275–292

    Article  MATH  Google Scholar 

  38. Martínez-Echevarría MJ, Recasens RM, Gámez M del CR, Ondina AM (2012) In-laboratory compaction procedure for cold recycled mixes with bituminous emulsions. Constr Build Mater 36:918–924

    Article  Google Scholar 

  39. Martínez-Ramírez S, Frías M (2009) The effect of curing temperature on white cement hydration. Constr Build Mater 23:1344–1348

    Article  Google Scholar 

  40. Miljković M (2013) Reconsideration of European empirical and fundamental specifications for asphalt mixtures. J Mater Civ Eng 25(8):1013–1040

    Article  Google Scholar 

  41. Miljković M, Radenberg M (2014) Characterisation of the influence of bitumen emulsion on asphalt mixture performance. Mater Struct. doi:10.1617/s11527-014-0302-y

    MATH  Google Scholar 

  42. Miljković M, Randenberg M (2014) Fracture behaviour of bitumen emulsion mortar mixtures. Constr Build Mater 62:126–134

    Article  Google Scholar 

  43. Niazi Y, Jalili M (2009) Effect of Portland cement and lime additives on properties of cold in-place recycled mixtures with asphalt emulsion. Constr Build Mater 23:1338–1343

    Article  Google Scholar 

  44. Partl MN, Flisch A, Jönsson M (2011) Comparison of laboratory compaction methods using X-ray computer tomography. Road Mater Pavement Des 8(2):139–164

    Article  Google Scholar 

  45. Peng J, Deng D, Yuan Q, Liu Z, Fang L (2014) Study of the rheological behavior of fresh cement emulsified asphalt paste. Constr Build Mater 66:348–355

    Article  Google Scholar 

  46. Pouliot N, Marchand J, Pigeon M (2003) Hydration mechanisms, microstructure, and mechanical properties of mortars prepared with mixed binder cement slurry–asphalt emulsion. J Mater Civ Eng 15(1):54–59

    Article  Google Scholar 

  47. Powers TC, Brownyards TL (1947) Studies of the physical properties of hardened cement paste. J Am Concr Inst 43(9):101–132

    Google Scholar 

  48. Qiang W, Peiyu Y, Ruhan A, Jinbo Y, Xiangming K (2011) Strength mechanism of cement–asphalt mortar. J Mater Civ Eng 23(9):1353–1359

    Article  Google Scholar 

  49. Renken P (2001) Vergleich der mechanischen Eigenschaften von mittels Walz-Sektor-Verdichtungsgerät und Lamellen-Verdichtungsgerät hergestellten Asphaltprobeplatten. Bonn: Bundesministerium für Verkehr, Bau- und Wohnungswesen (BMVBW), Heft 821

  50. Ringleb A (2012) Einfluss der Walzsektor-Verdichtung auf Ergebnisse des Triaxialen Druck-Schwellversuchs. Braunschweig: Technische Universität Braunschweig, Institut für Straßenwesen, Schriftenreihe Straßenwesen, Heft 25

  51. Rutherford T, Wang Z, Shu X, Huang B, Clarke D (2014) Laboratory investigation into mechanical properties of cement emulsified asphalt mortar. Constr Build Mater 65:76–83

    Article  Google Scholar 

  52. Sjöblom J (ed) (2001) Encyclopedic handbook of emulsion technology. Marcel Dekker, New York

    Google Scholar 

  53. Swiertz D, Johannes P, Tashman L, Bahia H (2012) Evaluation of laboratory coating and compaction procedures for cold 1 mix asphalt. Journal of the Association of Asphalt Paving Technologiers 81:81–107

    Google Scholar 

  54. Tan Y, Guo M (2014) Interfacial thickness and interaction between asphalt and mineral fillers. Mater Struct 47(4):605–614

    Article  Google Scholar 

  55. Tan Y, Ouyang J, Li Y (2014) Factors influencing rheological properties of fresh cement asphalt emulsion paste. Constr Build Mater 68:611–617

    Article  Google Scholar 

  56. Taylor HFW (1990) Cement chemistry. Academic Press, London

    Google Scholar 

  57. Underwood BS, Kim YR (2013) Effect of volumetric factors on the mechanical behavior of asphalt fine aggregate matrix and the relationship to asphalt mixture properties. Constr Build Mater 49:672–681

    Article  Google Scholar 

  58. Wang Z, Sha A (2010) Micro hardness of interface between cement asphalt emulsion mastics and aggregates. Mater Struct 43(4):453–461

    Article  Google Scholar 

  59. Wang F, Liu Z, Wang T, Hu S (2008) A novel method to evaluate the setting process of cement and asphalt emulsion in CA mortar. Mater Struct 41(4):643–647

    Article  Google Scholar 

  60. Wendling L, Gaudefroy V, Gaschet J, Ollier S, Gallier S (2014) Evaluation of the compactability of bituminous emulsion mixes: experimental device and methodology. Int J Pavement Eng. doi:10.1080/10298436.2014.925553

    Google Scholar 

  61. Wistuba MP (2014) The European regulations for specimen fabrication prior to performance testing of asphalt mixtures. Int J Pavement Eng. doi:10.1080/10298436.2014.925554

    Google Scholar 

  62. Wistuba MP (2014) The German segmented steel roller compaction method—state-of-the-art report. Int J Pavement Eng. doi:10.1080/10298436.2014.925555

    Google Scholar 

  63. Wörner T, Bönisch S, Schmalz M, Bösel P (2006) Verdichtbarkeit von Asphaltmischgut unter Einsatz des Walzsektor-Verdichtungsgerätes im Laboratorium. Bergisch Gladbach: Bundesanstalt für Straßenwesen, Heft S48

  64. Yongliang L, Xiangming K, Yanrong Z, Peiyu Y (2013) Static and dynamic mechanical properties of cement–asphalt composites. J Mater Civ Eng 25(10):1489–1497

    Article  Google Scholar 

  65. Yunpeng L, Fazhou W, Muyu L, Shuguang H (2014) A microstructural approach to adherence mechanism of cement and asphalt mortar (CA mortar) to repair materials. Constr Build Mater 66:125–131

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the valued support of Akzo Nobel Surface Chemistry AB (Stenungsund, Sweden) for producing and partially testing the bitumen emulsions and Dr. rer. nat. Georg Bachmann (Holcim (Deutschland) AG, Lägerdorf, Germany) for the assistance in the isothermal calorimetric testing of the cement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miomir Miljković.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miljković, M., Radenberg, M. Effect of compaction energy on physical and mechanical performance of bitumen emulsion mortar. Mater Struct 49, 193–205 (2016). https://doi.org/10.1617/s11527-014-0488-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-014-0488-z

Keywords

Navigation