Skip to main content
Log in

The use of fractional calculus to model the experimental creep-recovery behavior of modified bituminous binders

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Fitting of experimental creep-recovery curves obtained from rheological tests carried out on viscoelastic materials can reveal difficulties when handled by classical rheological theories, which generally provide exponential-type functions requiring a great number of parameters to be determined. Fractional calculus may represent a natural framework to develop more synthetic and efficient methods, overcoming most of the problems encountered with the classical approach. In this paper, a fractional model consisting of a dashpot in series with a springpot is proposed to describe the viscoelastic behavior of modified bituminous binders used in road pavements. The purpose is twofold: (i) to evaluate the adequacy of a rheological model involving a limited number of parameters, each of which with a precise physical meaning; (ii) to improve the accuracy of other fractional approaches proposed in literature. The investigation was validated by means of experimental data gathered from shear creep-recovery tests carried out at various temperatures on two modified bituminous binders containing a styrene–butadiene–styrene polymer and crumb rubber from end-of-life tires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Atanackovic TM, Pilipovic S, Zorica D (2011) Distributed-order fractional wave equation on a finite domain. Stress relaxation in a rod. Int J Eng Sci 49:175–190

    Article  MathSciNet  MATH  Google Scholar 

  2. Atanackovic TM, Pilipovic S, Zorica D (2013) Forced oscillations of a body attached to a viscoelastic rod of fractional derivative type. Int J Eng Sci 64:54–65

    Article  MathSciNet  Google Scholar 

  3. Bai F, Yang X, Zeng G (2014) Creep and recovery behavior characterization of asphalt mixture in compression. Constr Build Mater 54:504–511

    Article  Google Scholar 

  4. Barpi F, Valente S (2003) Creep and fracture in concrete: a fractional order rate approach. Eng Fract Mech 70:611–623

    Article  MATH  Google Scholar 

  5. Barpi F, Valente S (2004) A fractional order rate approach for modeling concrete structures subjected to creep and fracture. Int J Solids Struct 41:2607–2621

    Article  MATH  Google Scholar 

  6. Bradshaw RD, Brinson LC (1997) A sign control method for fitting and interconverting material functions for linearly viscoelastic. Solids Mech Time-Depend Mater 1:85–108

    Article  Google Scholar 

  7. Caputo M, Mainardi F (1971) Linear models of dissipation in anelastic solids. Nuovo Cimento 1:161–198

    Google Scholar 

  8. Carpinteri A, Mainardi F (1997) Fractals and fractional calculus in continuum mechanics. Springer-Verlag, Wien

    Book  MATH  Google Scholar 

  9. Celauro C, Fecarotti C, Pirrotta A, Collop A (2012) Experimental validation of a fractional model for creep/recovery testing of asphalt mixtures. Constr Build Mater 36:458–466

    Article  Google Scholar 

  10. Collins JH, Bouldin MG, Gelles R, Berker A (1991) Improved performance of paving asphalts by polymer modification. J Assoc Asphalt Paving Technol 60:43–79

    Google Scholar 

  11. Di Mino G, Airey G, Di Paola M, Pinnola F, D’Angelo G, Lo Presti D. Linear and nonlinear fractional hereditary constitutive laws of asphalt mixtures. J Civil Eng Manage. doi:10.3846/13923730.2014.914104

  12. Di Paola M, Pirrotta A, Valenza A (2011) Visco-elastic behavior through fractional calculus: an easier method for best fitting experimental results. Mech Mater 43:799–806

    Article  Google Scholar 

  13. Di Paola M, Pinnola F, Zingales M (2013) A discrete mechanical model of fractional hereditary materials. Meccanica 48:1573–1586

    Article  MathSciNet  MATH  Google Scholar 

  14. Hilfer R (2000) Fractional calculus in physics. World Scientific Pub Co, Singapore

    Book  MATH  Google Scholar 

  15. Hsu T, Chen S, Hung K (2011) Performance evaluation of asphalt rubber in porous asphalt-concrete mixtures. J Mater Civil Eng 23:342–349

    Article  Google Scholar 

  16. King GN, Muncy HW, Proudhomme JB (1986) Polymer modification: binder’s effect on mix properties. J Assoc Asphalt Paving Technol 55:519–540

    Google Scholar 

  17. Lai J, Bakker A (1995) An integral constitutive equation for nonlinear plasto-viscoelastic behavior of high density polyethylene. Polym Eng Sci 35:1339–1347

    Article  Google Scholar 

  18. Lee S-J, Akisetty CK, Amirkhanian SN (2008) The effect of crumb rubber modifier (CRM) on the performance properties of rubberized binders in HMA pavements. Constr Build Mater 22:1368–1376

    Article  Google Scholar 

  19. Levenberg E (2009) Viscoplastic response and modeling of asphalt-aggregate mixes. Mater Struct 42:1139–1151

    Article  Google Scholar 

  20. Lou YC, Schapery RA (1971) Viscoelastic characterization of a non-linear fiber-reinforced plastic. J Compos Mater 5:208–234

    Article  Google Scholar 

  21. Machado JT, Kiryakova V, Mainardi F (2011) Recent history of fractional calculus. Commun Nonlinear Sci Numer Simul 11:1140–1153

    Article  MathSciNet  MATH  Google Scholar 

  22. Magin RL (2006) Fractional calculus in bioengineering. Begel House Inc, Redding

    Google Scholar 

  23. Mainardi F (1994) Fractional relaxation in anelastic solids. J Alloy Compd 211:534–538

    Article  Google Scholar 

  24. Mainardi F (2010) Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models. Imperial College Press, London

    Book  MATH  Google Scholar 

  25. Masad E, Huang CW, Airey G, Muliana A (2008) Nonlinear viscoelastic analysis of unaged and aged asphalt binders. Constr Build Mater 22:2170–2179

    Article  Google Scholar 

  26. McDonald CH (1981) Recollections of early asphalt-rubber history. In: Proceedings of national seminar on asphalt-rubber, San Antonio

  27. Meral FC, Royston TJ, Magin R (2009) Fractional calculus in viscoelasticity: an experimental study. Commun Nonlinear Sci Numer Simul 15:939–945

    Article  MathSciNet  MATH  Google Scholar 

  28. Merusi F, Giuliani F (2011) Intrinsic resistance to non-reversible deformation in modified asphalt binders and its relation with specific criteria. Constr Build Mater 25:3356–3366

    Article  Google Scholar 

  29. Moreno F, Sol M, Martín J, Pérez M, Rubio MC (2013) The effect of crumb rubber modifier on the resistance of asphalt mixes to plastic deformation. Mater Des 47:274–280

    Article  Google Scholar 

  30. Müller S, Kästner M, Brummund J, Ulbricht V (2013) On the numerical handling of fractional viscoelastic material models in a FE analysis. Comput Mech 51:999–1012

    Article  MathSciNet  MATH  Google Scholar 

  31. Nutting PG (1921) A new general law of deformation. J Frankl Inst 191:679–685

    Article  Google Scholar 

  32. Nutting PG (1943) A general stress-strain formula. J Frankl Inst 253:513–524

    Article  Google Scholar 

  33. Oeser M, Pellin T, Scarpas T, Kasbergen C (2008) Studies on creep and recovery of rheological bodies based upon conventional and fractional formulations and their application on asphalt mixture. Int J Pavement Eng 9:373–386

    Article  Google Scholar 

  34. Park SW, Kim R, Schapery RA (1996) A viscoelastic continuum damage model and its application to uniaxial behavior of asphalt concrete. Mech Mater 24:241–255

    Article  Google Scholar 

  35. Podlubny I (1999) Fractional differential equations. Academic Press, San Diego

    MATH  Google Scholar 

  36. Provenzano PP, Lakes RS, Corr DT, Vanderby R Jr (2002) Application of nonlinear viscoelastic models to describe ligament behaviour. Biomech Model Mechanobiol 1:45–57

    Article  Google Scholar 

  37. Samko G, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives. Gordon and Breach, Amsterdam

    MATH  Google Scholar 

  38. Santagata E, Baglieri O, Dalmazzo D, Tsantilis L (2013) Evaluation of the anti-rutting potential of polymer modified binders by means of creep-recovery tests shear tests. Mater Struct 46:1673–1682

  39. Santagata E, Baglieri O, Alam M, Dalmazzo D (2014) A novel procedure for the evaluation of anti-rutting potential of asphalt binders. Int J Pavement Eng. doi:10.1080/10298436.2014.942859

  40. Schapery RA (1969) On the characterization of non-linear viscoelastic materials. Polym Eng Sci 9:295–310

  41. Schapery RA (1997) Nonlinear viscoelastic and viscoplastic constitutive equations based on thermodynamics. Mech Time-Depend Mater 1:209–240

    Article  Google Scholar 

  42. Schapery RA (1999) Nonlinear viscoelastic and viscoplastic constitutive equations with growing damage. Int J Fract 97:33–66

    Article  Google Scholar 

  43. Schapery RA (2000) Nonlinear viscoelastic solids. Int J Solids Struct 37:359–366

    Article  MathSciNet  MATH  Google Scholar 

  44. Schiessel H, Metzler HR, Blumen A, Nonnenmacher TF (1995) Generalized viscoelastic models: their fractional equations with solutions. J Phys A: Math Theor 28:6567–6584

    Article  MATH  Google Scholar 

  45. Sorvari J, Malinen M (2007) On the direct estimation of creep and relaxation functions. Mech Time-Depend Mater 11:143–157

    Article  MATH  Google Scholar 

  46. Tschoegl NW (1989) The phenomenological theory of linear viscoelastic behavior: an introduction. Springer, Berlin

    Book  MATH  Google Scholar 

  47. Uzan J (1996) Asphalt concrete characterization for pavement performance prediction. J Assoc Asphalt Paving Technol 65:573–607

    Google Scholar 

  48. Uzan J, Perl M, Sides A (1986) Numerical simulation of fatigue creep crack growth in a visco-elastoplastic material, II: experimental validation and application. Eng Fract Mech 23:333–344

    Article  Google Scholar 

  49. Ye Y, Yang X, Chen C (2010) Modified Schapery’s model for asphalt sand. J Eng Mech 136:448–454

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Sapora.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sapora, A., Cornetti, P., Carpinteri, A. et al. The use of fractional calculus to model the experimental creep-recovery behavior of modified bituminous binders. Mater Struct 49, 45–55 (2016). https://doi.org/10.1617/s11527-014-0473-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-014-0473-6

Keywords

Navigation