Skip to main content

Advertisement

Log in

Characterisation of an unbound granular mixture with waste tyre rubber for subballast layers

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Scrap tyres are a solid waste material produced in large quantities. One potential way of disposal is to use rubber particles from shredded tyres as a construction material. Within this context, this paper presents a comprehensive set of laboratory and field tests carried out to evaluate the characteristics of coarse aggregates mixed with rubber particles. The main objective is to assess whether these mixes could be used to form the subballast layer in new railway lines. All the technical features usually required for subballast were tested, including degradation, bearing capacity, density, resilient modulus, etc. The results show that adding between 1 and 10 % of rubber (in weight) improves resistance to degradation. On the other hand, bearing capacity is reduced, but still well over the usual range for common subballast if the rubber content is limited to <5 %. Moreover, the extension and compaction of these mixes can be done using conventional construction equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sharma VK, Fortuna F, Mincarini M, Berillo M, Cornacchia G (2000) Disposal of waste tyres for energy recovery and safe environment. Appl Energy 65(1–4):381–394

    Article  Google Scholar 

  2. Commission European (1999) Directive on the Landfill of Waste 1999/31/EC. Off J Eur Union 182:1–19

    Google Scholar 

  3. ASTM D6270-98 (1998) Standard practice for use of scrap tires in civil engineering applications. ASTM, West Conshohocken

    Google Scholar 

  4. Commission European (2008) Waste Framework Directive 2008/98/EC. Off J Eur Union 312:3–30

    Google Scholar 

  5. SIGNUS (2012) Activity Report 2012. Available at: http://www.signus.es/. Accessed 2 July 2014

  6. Edinçliler A, Baykal G, Saygılı A (2010) Influence of different processing techniques on the mechanical properties of used tires in embankment construction. Waste Manag 30:1073–1080

    Article  Google Scholar 

  7. Sheehan PJ, Warmerdam JM, Ogle S, Humphrey DN, Patenaude SM (2006) Evaluating the risk to aquatic ecosystems posed by leachate from tire shred fill in roads using toxicity tests, toxicity identification evaluations and groundwater modeling. Environ Toxicol Chem 25(2):400–411

    Article  Google Scholar 

  8. Humphrey DN, Blumenthal M (2010) The use of tire-derived aggregate in road construction applications. Green Streets Highw 2010:299–313

    Google Scholar 

  9. Humphrey DN, Whetten N, Weaver J, Recker K (2000) Tire shreds as lightweight fill for construction on weak marine clay. In: Proceedings of the international symposium on coastal geotechnical engineering in practice. Balkema, Rotterdam

  10. Wolfe SL, Humphrey DN, Wetzel EA (2004) Development of tire shred underlayment to reduce groundborne vibration from LRT track. Geotechnical engineering for transportation projects: Proceedings of Geo-Trans 2004, pp 750–759. ISSN:0-7844-0744-4

  11. Cano H, Estaire J, Rodríguez R (2011) Terraplén Experimental construido con Neumáticos Troceados (Experimental embankment built with shredded tyres). Jornada Técnica Sobre Experiencias Recientes en Estructuras de Tierra para Infraestructuras Viarias. Madrid, 10 Feb 2011

  12. Di Mino G, Di Liberto M, Maggiore C, Noto S (2012) A dynamic model of ballasted rail track with bituminous sub-ballast layer. Procedia 53:366–378

    Google Scholar 

  13. Wang J, Zeng X (2004) Numerical simulation of vibration attenuation of high-speed train foundations with varied trackbed underlayment materials. J Vib Control 10:1123–1136

    Article  Google Scholar 

  14. Buonanno A, Mele R (2000) The use of bituminous mix sub-ballast in the Italian State Railways. 2nd Eurasphalt & Eurobitume Congress, Barcelona, 20–22 Sept 2000

  15. Feng Z, Sutter K (2000) Dynamic properties of granulated rubber/sand mixtures. Geotech Test J 23(3):338–344

    Article  Google Scholar 

  16. Nakhaei A, Marandi SM, Sani Kermani S, Bagheripour MH (2012) Dynamic properties of granular soils mixed with granulated rubber. Soil Dyn Earthq Eng 43:124–132

    Article  Google Scholar 

  17. Salgado R, Yoon S, Zia Siddiki N (2003) Construction of tire shreds test embankment. Joint Transportation Research Program. Technical Report Nº: FHWA/IN/JTRP-2002/35. Available at: http://docs.lib.purdue.edu/jtrp/42/. Accessed 11 Feb 2013

  18. Yoon S, Prezzi M, Zia Siddiki N, Kim B (2005) Construction of a test embankment using a sand–tire shred mixture as fill material. Waste Manag 26:1033–1044

    Article  Google Scholar 

  19. Melis M (2006) Terraplenes y balasto en Alta Velocidad Ferroviaria (Embankment and ballast in high speed railways). Revista de Obras Públicas 3464:7–36

    Google Scholar 

  20. Vipulanandan C, Bilgin Ö, Jeannot Y, Vembu K, Bahadir M (2009) Prediction of embankment settlement over soft soils. Project Report Nº FHWA/TX-09/0-5530-1. Available at: http://d2dtl5nnlpfr0r.cloudfront.net/tti.tamu.edu/documents/0-5530-1.pdf. Accessed 30 June 2014

  21. Spanish Ministry of Public Works (2006) Pliego de Prescripciones Técnicas Generales de Materiales Ferroviarios PF-7: Subbalasto (General Technical Specifications for Railway Materials PF-7: Subballast). Boletín Oficial del Estado 103:16891–16909

    Google Scholar 

  22. ADIF (2008) ‘Pliego de Prescripciones Técnicas Tipo para los Proyectos de Plataforma PGP-2008 (Technical specifications for Railway Platform Projects PGP-2008)

  23. ASTM D75/D75M-09 (2009) Standard practice for sampling aggregates. ASTM, West Conshohocken

    Google Scholar 

  24. Speir RH, Witczak MW (1996) Use of shredded rubber in unbound granular flexible pavement layers. Transp Res Rec 1547:96–106

    Article  Google Scholar 

  25. Garnica PA, Pérez GN, Gomes LA (2001) Módulo de Resiliencia en Suelos Finos y Materiales Granulares. (Resilient Modulus in Fine Soils and Aggregate Materials). Publicación Técnica, 142, Secretaría de Comunicaciones y Transportes (SCI), Instituto Mexicano del Transporte (IMT), Sanfandila

  26. Tutumluer E, Seyhan U (1999) Laboratory determination of anisotropic aggregate resilient moduli using a new innovative test device. 78th Annual meeting of the transportation research board specialty session on “Determination of resilient modulus for pavement design”, Washington, DC

  27. AASHTO T307-99-UL (2003) Standard method of test for determining the resilient modulus of soils and aggregate materials. AASHTO, Washington, DC

    Google Scholar 

  28. FGSV: Earthworks and Foundation Engineering Task Force ZTVE-StB 94 (1994) Supplementary technical terms and conditions of contract and guidelines for earthworks in road construction

  29. SETRA (2005) Informative Note 114. Éléments techniques pour la conception et la realization de planches d’essais de compactage dans les chantiers de terrassements (Technical elements for the conception and construction of compaction test boards on earthwork sites)

  30. Hataf N, Rahimi MM (2006) Experimental investigation of bearing capacity of sand reinforced with randomly distributed tire shreds. Constr Build Mater 20(10):910–916

    Article  Google Scholar 

  31. National Cooperative Highway Research Program (2004) Research results digest. Laboratory determination of resilient modulus for flexible pavement design. Available at: http://onlinepubs.trb.org/onlinepubs/nchrp/nchrp_rrd_285.pdf. Accessed 1 Apr 2014

  32. Brown SF, Pappin JW (1985) Analysis of pavements with granular bases. Transp Res Rec 1022:52–59

    Google Scholar 

  33. Araya AA, Huurman M, Molenaar AAA, Houben LJM (2012) Investigation of the resilient behavior of granular base materials with simple test apparatus. Mater Struct 45:695–705

    Article  Google Scholar 

  34. Mohammad LN, Puppala A, Alavalli P (1999) Effect of strain measurements on resilient modulus of granular soils. Dynamic geotechnical testing, vol 2, ASTM STP 1213, pp 202–221

  35. Gudishala R (2004) Development of resilient modulus prediction models for base and subgrade pavement layers from in situ devices test results. PhD thesis, Sri Krishnadevaraya University, Anantapur

  36. German Railways NGT 39 (1997) Richtlinie für die Anwendung des Leichten Fallgewichtsgerätes im Eisenbahnbau. (Directions of application of light drop-weight tester in railways)

  37. ASTM D3017 (2001) Standard test method for water content of soil and rock in place by nuclear methods (shallow depth). ASTM, West Conshohocken

    Google Scholar 

  38. ASTM D2922 (2001) Standard test methods for density of soil and soil-aggregate in place by nuclear methods (shallow depth). ASTM, West Conshohocken

    Google Scholar 

  39. ASTM D1883 (2005) Standard test method for CBR (California bearing ratio) of laboratory compacted soils. ASTM, West Conshohocken

    Google Scholar 

  40. ASTM C131 (2006) Standard test method for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine. ASTM, West Conshohocken

    Google Scholar 

  41. ASTM D5821 (2006) Standard test method for determining the percentage of fractured particles in coarse aggregate. ASTM, West Conshohocken

    Google Scholar 

  42. ASTM D4959 (2007) Standard test method for determination of water (moisture) content of soil by direct heating. ASTM, West Conshohocken

    Google Scholar 

  43. ASTM D6913 (2009) Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. ASTM, West Conshohocken

    Google Scholar 

  44. ASTM D2419 (2009) Standard test method for sand equivalent value of soils and fine aggregate. ASTM, West Conshohocken

    Google Scholar 

  45. ASTM D4694 (2009) Standard test method for deflections with a falling-weight-type impulse load device. ASTM, West Conshohocken

    Google Scholar 

  46. ASTM D4318 (2010) Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM, West Conshohocken

    Google Scholar 

  47. ASTM D5084 (2010) Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter. Method B and C. ASTM, West Conshohocken

    Google Scholar 

  48. ASTM D6928 (2010) Standard test method for resistance of coarse aggregate to degradation by abrasion in the Micro-Deval apparatus. ASTM, West Conshohocken

    Google Scholar 

  49. ASTM D3080/D3080M (2011) Standard test method for direct shear test of soils under consolidated drained conditions. ASTM, West Conshohocken

    Google Scholar 

  50. ASTM D7181 (2011) Standard test method for consolidated drained triaxial compression test for soils. ASTM, West Conshohocken

    Google Scholar 

  51. ASTM C127 (2012) Standard test method for density, relative density (specific gravity), and absorption of coarse aggregate. ASTM, West Conshohocken

    Google Scholar 

  52. ASTM D7760 (2012) Standard test method for measurement of hydraulic conductivity of tire derived aggregates using a rigid wall permeameter. ASTM, West Conshohocken

    Google Scholar 

  53. ASTM D1557 (2012) Standard test methods for laboratory compaction characteristics of soil using modified effort (56,000 ft-lbf/ft3 (2,700 kN-m/m3)). ASTM, West Conshohocken

    Google Scholar 

  54. ASTM D2974 (2013) Standard test methods for moisture, ash, and organic matter of peat and other organic soils. ASTM, West Conshohocken

    Google Scholar 

  55. BS 1377-5 (1990) Methods of test for soils for civil engineering purposes. Compressibility, permeability and durability tests. British Standards Institution, London

    Google Scholar 

  56. BS 1377-9 (1990) Methods for test for soils for civil engineering purposes. In-situ tests: determination of the vertical deformation and strength characteristics of soil by the plate loading. British Standards Institution, London

    Google Scholar 

  57. CEDEX NLT-148/91 (1991) Toma de muestras de roca, escorias, grava, arena, polvo mineral y bloques de piedra empleados como materiales de construcción de carreteras (Sampling of rocks, slags, sand, mineral dust and stone blocks used for road construction)

  58. CEDEX NLT-357:98 (1998) Ensayo de carga con placa (Load plate test)

  59. RENFE N.R.V. 2-1-0.0 ss(1982) Obras de Tierra, Calidad de la Plataforma. (Earthworks, platform quality)

Download references

Acknowledgments

The authors wish to thank GUEROLA for providing the soil samples from its quarry, EMRO for providing the rubber particles and Ángel Morilla Rubio, Manolo Medel Perallón and Esther Medel Colmenar for their help during the field tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Insa Franco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hidalgo Signes, C., Martínez Fernández, P., Medel Perallón, E. et al. Characterisation of an unbound granular mixture with waste tyre rubber for subballast layers. Mater Struct 48, 3847–3861 (2015). https://doi.org/10.1617/s11527-014-0443-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-014-0443-z

Keywords

Navigation