Skip to main content
Log in

Performance of hot mix epoxy asphalt binder and its concrete

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

Hot mix epoxy asphalt (HMEA) binders have been widely used on the pavement of orthotropic steel bridge decks. In present paper, rotational viscosity, glass transition temperature, damping properties, mechanical properties, and morphology of HMEA were investigated using Brookfield rotational viscometer, differential scanning calorimetry, dynamic mechanical analysis (DMA), universal material tester, laser scanning confocal microscopy. Furthermore, the high temperature deformation resistance, rutting resistance, and fatigue cracking resistance of HMEA concretes (HMEACs) were evaluated using Marshall, wheel tracking, and three-point bending tests. Results show that the addition of asphalts postpones the cure reaction of epoxy resin. The rotational viscosity of HMEA binder keeps low enough to meet the demands of asphalt mixture mixing and paving at 160 °C. DMA results show that HMEA exhibits excellent damping properties. The addition of asphalts lowers the tensile strength and modulus of epoxy resin. However, the elongation at break of HMEA increases with the increase of asphalt contents. HMEACs exhibit good resistance to high temperature deformation, rutting, and fatigue cracking performances. All these results show that HMEA binder exhibits excellent performance in the steel bridge pavement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Read J, Whiteoak D (2003) The shell bitumen handbook. Thomas Telford Publishing, London

    Google Scholar 

  2. Yidirim Y (2007) Polymer modified asphalt binders. Constr Build Mater 21:66–72

    Article  Google Scholar 

  3. Stastna J, Zanzotto L, Vacin OJ (2003) Viscosity function in polymer-modified asphalts. J Colloid Interface Sci 259:200–207

    Article  Google Scholar 

  4. Fawcett AH, Mcnally TM (2000) A dynamic mechanical and thermal study of various rubber–bitumen blends. J Appl Polym Sci 77:586–601

    Article  Google Scholar 

  5. Singh B, Gupta M, Kumar L (2006) Bituminous polyurethane network: preparation, properties, and end use. J Appl Polym Sci 101:217–226

    Article  Google Scholar 

  6. Perez-Lepe A, Martinez-Boza FJ, Gallegos C (2007) High temperature stability of different polymer-modified bitumens: a rheological evaluation. J Appl Polym Sci 103:1166–1174

    Article  Google Scholar 

  7. Mcnally T (2011) Introduction to polymer modified bitumen. In: Mcnally T (ed) Polymer modified bitumen: properties and characterization. Woodhead Publishing Limited, Cambridge, pp 1–15

    Chapter  Google Scholar 

  8. Ronaldo C, Michele S, Eliane M, Carvalho EML (2008) Fatigue life estimates for a slender orthotropic steel deck. J Constr Steel Res 64:134–143

    Article  Google Scholar 

  9. Gaul R (2009) A long life pavement for orthotropic bridge decks in China. In: New technologies in construction and rehabilitation of Portland cement concrete pavement and bridge deck pavement. Geotechnical special publications (GSP) 196, pp 1–8

  10. Yu JY, Cong PL, Wu SP (2009) Laboratory investigation of the properties of asphalt modified with epoxy resin. J Appl Polym Sci 113:3557–3563

    Article  Google Scholar 

  11. Cong PL, Yu JY, Chen SF (2010) Effects of epoxy resin contents on the rheological properties of epoxy-asphalt blends. J Appl Polym Sci 118:3678–3684

    Article  Google Scholar 

  12. Cong PL, Chen SF, Yu JY (2011) Investigation of the properties of epoxy resin-modified asphalt concretes for application to orthotropic bridge decks. J Appl Polym Sci 121:2310–2316

    Article  Google Scholar 

  13. Kang Y, Chen ZM, Jiao Z, Huang W (2010) Rubber-like thermosetting epoxy asphalt composites exhibiting atypical yielding behaviors. J Appl Polym Sci 116:1678–1685

    Google Scholar 

  14. Kang Y, Wang F, Chen ZM (2010) Reaction of asphalt and maleic anhydride: kinetics and mechanism. Chem Eng J 164:230–237

    Article  Google Scholar 

  15. Qian ZD, Chen LL, Jiang CL, Luo S (2011) Performance evaluation of a lightweight epoxy asphalt mixture for basculebridge pavements. Constr Build Mater 25:3117–3122

    Article  Google Scholar 

  16. Chen LL, Qian ZD, Hu HZ (2013) Epoxy asphalt concrete protective course used on steel railway bridge. Constr Build Mater 41:125–131

    Article  Google Scholar 

  17. Yao B, Cheng G, Wang X, Cheng C (2013) Characterization of the stiffness of asphalt surfacing materials on orthotropic steel bridge decks using dynamic modulus test and flexural beam test. Constr Build Mater 44:200–206

    Article  Google Scholar 

  18. Xiao Y, van de Ven MFC, Molenaar AAA, Su Z, Zandvoort F (2011) Characteristics of two-component epoxy modified bitumen. Mater Struct 44:611–622

    Article  Google Scholar 

  19. Zhang YG, Pan XY, Sun YF, Xu W, Pan YQ, Xie HF et al (2014) Flame retardancy, thermal, and mechanical properties of mixed flame retardant modified epoxy asphalt binders. Constr Build Mater 68:62–67

    Article  Google Scholar 

  20. Yuksel T (2009) High temperature properties of wax modified binders and asphalt mixtures. Constr Build Mater 23:3220–3224

    Article  Google Scholar 

  21. Yu JY, Cong PL, Wu SP, Cheng SB (2009) Curing behavior of epoxy asphalt. J Wuhan Univ of Technol-Mater Sci Ed 24:462–465

    Article  Google Scholar 

  22. Giavarini C, Pochetti F (1973) Characterization of petroleum products by DSC analysis. J Therm Anal 5:83–94

    Article  Google Scholar 

  23. Çubuk M, Gürü M, Çubuk MK (2009) Improvement of bitumen performance with epoxy resin. Fuel 88:1324–1328

    Article  Google Scholar 

  24. Baldino N, Gabriele D, Rossi CO, Seta L, Lupi FR, Caputo P (2012) Low temperature rheology of polyphosphoric acid (PPA) added bitumen. Constr Build Mater 36:592–596

    Article  Google Scholar 

  25. Lu X, Isacsson U, Ekblad J (2003) Influence of polymer modification on low temperature behaviour of bituminous binders and mixtures. Mater Struct 36:652–656

    Article  Google Scholar 

  26. Yin HY, Jin H, Wang CS, Sun YF, Yuan ZR, Xie HF et al (2014) Thermal, damping and mechanical properties of thermosetting epoxy modified asphalts. J Therm Anal Calorim 115:1073–1080

    Article  Google Scholar 

  27. Masson JF, Polomark GM (2001) Bitumen microstructure by modulated differential scanning calorimetry. Thermochim Acta 374:105–114

    Article  Google Scholar 

  28. Wise CW, Cook WD, Goodwin AA (2000) CTBN rubber phase precipitation in model epoxy resins. Polymer 41:4625–4633

    Article  Google Scholar 

  29. Li C, Xu SA, Xiao FY, Wu CF (2006) Dynamic mechanical properties of chlorinated butyl rubber blends. Eur Polym J 42:2507–2514

    Article  Google Scholar 

  30. Henna PH, Larock RC (2007) Rubbery thermosets by ring-opening metathesis polymerization of a functionalized castor oil and cycloodene. Macromol Mater Eng 292:1201–1209

    Article  Google Scholar 

  31. Chen SB, Wang QH, Wang TM (2012) Damping, thermal, and mechanical properties of carbon nanotubes modified castor oil-based polyurethane/epoxy interpenetrating polymer network composites. Mater Design 38:47–52

    Article  Google Scholar 

  32. Wang CS, Chen XY, Chen JQ, Liu CG, Xie HF, Cheng RS (2011) Synthesis and characterization of novel polyurethane acrylates based on soy polyols. J Appl Polym Sci 122:2449–2455

    Article  Google Scholar 

  33. Jin H, Zhang YG, Wang CS, Su YF, Yuan ZR, Pan YQ et al (2014) Thermal, mechanical, and morphological properties of soybean oil-based polyurethane/epoxy resin interpenetrating polymer networks (IPNs). J Therm Anal Calorim 117:773–781

    Article  Google Scholar 

  34. Li FK, Larock RC (2002) New soybean oil-styrene-divinylbenzene thermosetting copolymers-IV. Good damping properties. Polym Adv Technol 13:436–449

    Article  Google Scholar 

  35. Qin CL, Cai WM, Cai J, Tang DY, Zhang JS, Qin M (2004) Damping properties and morphology of polyurethane/vinyl ester resin interpenetrating polymer network. Mater Chem Phys 85:402–409

    Article  Google Scholar 

  36. Fan RP, Meng G, Yang J, He CH (2009) Experimental study of the effect of viscoelastic damping materials on noise and vibration reduction within railway vehicles. J Sound Vib 319:58–76

    Article  Google Scholar 

  37. Yao SR (1994) Means to widen the temperature range of high damping behavior of IPN formation. In: Klempner D, Frisch KC (eds) Advances in interpenetrating polymer networks, vol. IV. Technomic Publishing Company, Lancaster, PA, pp 243–286

  38. Arnaud L, Houel A (2007) Fatigue damage of asphalt pavement on an orthotropic bridge deck: mechanical monitoring with ultrasonic wave propagation. Road Mater Pave Des 8:505–522

    Google Scholar 

  39. Zavareh S, Vahdat G (2012) Toughening of brittle epoxy using bitumen as a new modifier. J Reinf Plast Comp 31:247–258

    Article  Google Scholar 

  40. Chikhi N, Fellahi S, Bakar M (2002) Modification of epoxy resin using reactive liquid (ATBN) rubber. Eur Polym J 38:251–264

    Article  Google Scholar 

  41. Champion L, Gerard JF, Planche JP, Martin D, Anderson D (2001) Low temperature fracture properties of polymer-modified asphalts relationships with the morphology. J Mater Sci 36:451–460

    Article  Google Scholar 

  42. Lee YJ, France LM, Hawley MC (1997) The effect of network formation on the rheological properties of SBR modified asphalt binders. Rubber Chem Technol 70:256–263

    Article  Google Scholar 

  43. Cabanelas JC, Serrano B, Gonzalez MG, Baselga J (2005) Confocal microscopy study of phase morphology evolution in epoxy/polysiloxane thermosets. Polymer 46:6633–6639

    Article  Google Scholar 

  44. Wang YT, Wang CS, Yin HY, Wang LL, Xie HF, Cheng RS (2012) Carboxyl-terminated butadiene-acrylonitrile-toughened epoxy/carboxyl-modified carbon nanotube nanocomposites: thermal and mechanical properties. Express Polym Lett 6:719–728

    Article  Google Scholar 

  45. He D, Ding XD, Chang PS, Chen QM (2012) Effect of annealing on phase separation and mechanical properties of epoxy/ATBN adhesive. Int J Adhes Adhes 38:11–16

    Article  Google Scholar 

  46. Zhang JS, Wang YT, Wang XS, Ding GW, Pan YQ, Xie HF et al (2014) Effects of amino-functionalized carbon nanotubes on the properties of amine-terminated butadiene-acrylonitrile rubber-toughened epoxy resins. J Appl Polym Sci 131:40472

    Google Scholar 

  47. Qian JD, Luo S, Wang JW (2007) Laboratory evaluation of epoxy resin modified asphalt mixtures. J Southeast Univ (Eng Ed) 23:117–121

    Google Scholar 

  48. Huang W, Qian ZD, Chen G, Yang J (2003) Epoxy asphalt concrete paving on the deck of long-span steel bridges. Chin Sci Bull 48:2391–2394

    Article  Google Scholar 

  49. Mobasher B, Mamlouk MS, Lin HM (1997) Evaluation of crack propagation properties of asphalt mixtures. J Transp Eng-ASCE 123:405–413

    Article  Google Scholar 

  50. Tan YQ, Shan LY, Fang J, Zhang XY (2009) Anti-cracking mechanism of diatomite asphalt and diatomite asphalt mixture at low temperature. J Southeast Univ (Eng Ed) 25:74–78

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the financial support from Opening Funds of National Engineering Laboratory for Advance Road Materials, Jiangsu Province Natural Science Foundation (BK2011085), Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) and the Fundamental Research Funds for the Central Universities (20620140066). The authors are also grateful to Dr. Sunjie Ye for language help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongfeng Xie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, H., Zhang, Y., Sun, Y. et al. Performance of hot mix epoxy asphalt binder and its concrete. Mater Struct 48, 3825–3835 (2015). https://doi.org/10.1617/s11527-014-0442-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1617/s11527-014-0442-0

Keywords

Navigation