Materials and Structures

, Volume 48, Issue 7, pp 2261–2276

Effect of ionic crosslinking on the swelling and mechanical response of model superabsorbent polymer hydrogels for internally cured concrete

Original Article

Abstract

The chemical and physical structure–property relationships of model superabsorbent polymer hydrogels were characterized with respect to swelling behavior and mechanical properties in different ionic solutions (Na+, Ca2+, and Al3+). The model hydrogels were composed of poly(sodium acrylate-acrylamide) (PANa-PAM) copolymer with varying concentrations of PANa (0, 17, 33, 67, and 83 wt%) and covalent crosslinking densities of 1, 1.5, and 2 wt%. By synthesizing the hydrogels in-house, systems with independently tunable amounts of covalent crosslinking and anionic functional groups were created, allowing for the relative effects of covalent and ionic crosslinking on the properties of the hydrogels to be directly quantified. It was found that the presence of Ca2+ and Al3+ in the absorbed fluid significantly decreased the swelling capacity and altered the swelling kinetics of the PANa-PAM hydrogels. The presence of Al3+ in solution resulted in the unexpected formation of a mechanically stiff barrier layer at the hydrogel’s surface, which hindered the release of fluid and caused the overall elastic modulus of the hydrogel to increase from O(10 kPa) for hydrogels immersed in Ca2+ solutions to O(100 kPa) for hydrogels immersed in Al3+ solutions. Tensile tests performed on isolated specimens of the stiff barrier layer yielded elastic moduli in the O(50–100 MPa) range.

Keywords

Superabsorbent polymer (SAP) Cement hydration High-performance concrete Multi-valent ions Swelling kinetics 

References

  1. 1.
    Andersson K, Allard B, Bengtsson M, Magnusson B (1989) Chemical composition of cement pore solutions. Cem Concr Res 19:327–332. doi:10.1016/0008-8846(89)90022-7 CrossRefGoogle Scholar
  2. 2.
    Bahaj H, Benaddi R, Bakass M, Bayane C (2010) Swelling of superabsorbents polymers in an aqueous medium. J Appl Polym Sci 115:2479–2484. doi:10.1002/app CrossRefGoogle Scholar
  3. 3.
    Bentur A, Igarashi S, Kovler K (2001) Prevention of autogenous shrinkage in high-strength concrete by internal curing using wet lightweight aggregates. Cem Concr Res 31:1587–1591. doi:10.1016/S0008-8846(01)00608-1 CrossRefGoogle Scholar
  4. 4.
    Bentz D, Halleck P (2006) Water movement during internal curing: direct observation using X-ray microtomography. Concr Int 28:39–45Google Scholar
  5. 5.
    Bentz DP, Snyder KA (1999) Protected paste volume in concrete extension to internal curing using saturated lightweight fine aggregate. Cem Concr Res 29:1863–1867CrossRefGoogle Scholar
  6. 6.
    Breitenbücher R (1998) Developments and applications of high-performance concrete. Mater Struct 31:209–215CrossRefGoogle Scholar
  7. 7.
    Buchholz FL (1994) Preparation methods of superabsorbent polyacrylates. Superabsorbent Polymers, Washington, pp 27–38Google Scholar
  8. 8.
    Buchholz FL (1998) Absorbency and superabsorbency. In: Buchholz FL, Graham AT (eds) Modern superabsorbent polymer technology. Wiley, New York, pp 1–18Google Scholar
  9. 9.
    Chen X-P, Shan G-R, Huang J et al (2004) Synthesis and properties of acrylic-based superabsorbent. J Appl Polym Sci 92:619–624. doi:10.1002/app.20052 CrossRefGoogle Scholar
  10. 10.
    Chen Z, Liu M, Ma S (2005) Synthesis and modification of salt-resistant superabsorbent polymers. React Funct Polym 62:85–92. doi:10.1016/j.reactfunctpolym.2004.09.003 CrossRefGoogle Scholar
  11. 11.
    Christian GD (2004) Analytical chemistry. Wiley, New York, pp 742–744Google Scholar
  12. 12.
    Cusson D, Hoogeveen T (2008) Internal curing of high-performance concrete with pre-soaked fine lightweight aggregate for prevention of autogenous shrinkage cracking. Cem Concr Res 38:757–765. doi:10.1016/j.cemconres.2008.02.001 CrossRefGoogle Scholar
  13. 13.
    Di Bella C, Schlitter J, Carboouneau N, Weiss WJ (2012a) Documenting the construction of a plain concrete bridge deck and an internally cured bridge deck—Joint Transportation Research ProgramGoogle Scholar
  14. 14.
    Di Bella C, Villani C, Phares N et al (2012b) Chloride transport and service life in internally cured concrete. Am. Soc. Civ. Eng. Struct. CongrGoogle Scholar
  15. 15.
    Double DD, Hewlett PC, Sing KSW, Raffle JF (1983) New developments in understanding the chemistry of cement hydration [and discussion]. Philos Trans R Soc A Math Phys Eng Sci 310:53–66. doi:10.1098/rsta.1983.0065 CrossRefGoogle Scholar
  16. 16.
    Esteves LP (2011) Superabsorbent polymers: on their interaction with water and pore fluid. Cem Concr Compos 33:717–724. doi:10.1016/j.cemconcomp.2011.04.006 CrossRefGoogle Scholar
  17. 17.
    Geiker MR, Bentz DP, Jensen OM (2004) Mitigating autogenous shrinkage by internal curing mitigating autogenous shrinkage by internal curing. In: High-performance structural lightweight concrete, pp 143–148Google Scholar
  18. 18.
    Guthrie WS, Yaede JM (2013) Internal curing of concrete bridge decks in Utah: preliminary evaluation. Transportation Research Board No. 17Google Scholar
  19. 19.
    Hammer T (1992) High strength LWA concrete with silica fume—effect of water content in the LWA on mechanical properties. Suppl. Pap. In: 4th CANMET/ACI international conference on the use of fly ash, silica fume, slag, and natural pozzolans in concrete, Istanbul, Turkey, pp 314–330Google Scholar
  20. 20.
    Hasholt MT, Jensen OM, Kovler K, Zhutovsky S (2012) Can superabsorent polymers mitigate autogenous shrinkage of internally cured concrete without compromising the strength? Constr Build Mater 31:226–230. doi:10.1016/j.conbuildmat.2011.12.062 CrossRefGoogle Scholar
  21. 21.
    Henderson KJ, Zhou TC, Otim KJ, Shull KR (2010) Ionically cross-linked triblock copolymer hydrogels with high strength. Macromolecules 43:6193–6201. doi:10.1021/ma100963m CrossRefGoogle Scholar
  22. 22.
    Horkay F, Tasaki I, Basser PJ (2000) Osmotic swelling of polyacrylate hydrogels in physiological salt solutions. Biomacromolecules 1:84–90CrossRefGoogle Scholar
  23. 23.
    Horkay F, Tasaki I, Basser PJ (2001) Effect of monovalent–divalent cation exchange on the swelling of polyacrylate hydrogels in physiological salt solutions. Biomacromolecules 2:195–199CrossRefGoogle Scholar
  24. 24.
    Jar P-YB, Wu YS (1997) Effect of counter-ions on swelling and shrinkage of polyacrylamide-based ionic gels. Polymer 38:2557–2560. doi:10.1016/S0032-3861(97)01023-9 CrossRefGoogle Scholar
  25. 25.
    Jensen OM, Hansen PF (2001) Water-entrained cement-based materials I. Principles and theoretical background. Cem Concr Res 31:647–654. doi:10.1016/S0008-8846(01)00463-X CrossRefGoogle Scholar
  26. 26.
    Jensen OM, Hansen PF (2002) Water-entrained cement-based materials II. Experimental observations. Cem Concr Res 32:973–978. doi:10.1016/S0008-8846(02)00737-8 CrossRefGoogle Scholar
  27. 27.
    Jones W (2013) Freeze-thaw behavior of internally cured concrete. Purdue University, West LafayetteGoogle Scholar
  28. 28.
    Lura P, Jensen O, van Breugel K (2003) Autogenous shrinkage in high-performance cement paste: an evaluation of basic mechanisms. Cem Concr Res 33:223–232CrossRefGoogle Scholar
  29. 29.
    Lura P, Friedemann K, Stallmach F et al (2012) Kinetics of water migration in cement-based systems containing superabsorbent polymers. In: Mechtcherine V, Reinhardt H-W (eds) Application of super absorbent polymers in concrete construction. Springer, Dordrecht, pp 21–37CrossRefGoogle Scholar
  30. 30.
    Murali Mohan Y, Keshava Murthy PS, Mohana Raju K (2006) Preparation and swelling behavior of macroporous poly(acrylamide-co-sodium methacrylate) superabsorbent hydrogels. J Appl Polym Sci 101:3202–3214. doi:10.1002/app.23277 CrossRefGoogle Scholar
  31. 31.
    Raju KM, Raju MP, Mohan YM (2003) Synthesis of superabsorbent copolymers as water manageable materials. Polym Int 52:768–772. doi:10.1002/pi.1145 CrossRefGoogle Scholar
  32. 32.
    Reinhardt HW, Assman A, Monning S (2008) Superabsorbent polymers (SAP)—an admixture to increase the durability of concrete. In: Sun W, van Breugel K, Miao C et al (eds) International conference on microstructure related durability of cementitious composites, Nanjing, China, pp 313–322Google Scholar
  33. 33.
    Rubinstein M, Colby RH (2003) Polymer physics. OUP, OxfordGoogle Scholar
  34. 34.
    Schlitter J, Henkensiefken R, Castro J et al (2010) Development of internally cured concrete for increased service life—FHWA/IN/JTRP-2010/10Google Scholar
  35. 35.
    Schlitter JL, Bentz DP, Weiss WJ (2013) Quantifying residual stress development and reserve strength in internally cured concrete. Am Concr Inst J Mater 110:3–11. doi:10.14359/51684361
  36. 36.
    Schröfl C, Mechtcherine V, Gorges M (2012) Relation between the molecular structure and the efficiency of superabsorbent polymers (SAP) as concrete admixture to mitigate autogenous shrinkage. Cem Concr Res 42:865–873. doi:10.1016/j.cemconres.2012.03.011 CrossRefGoogle Scholar
  37. 37.
    Siramanont J, Vichit-Vadakan W, Siriwatwechakul W (2010) The impact of SAP structure on the effectiveness of internal curing. In: Jensen OM, Hasholt MT, Laustsen S (eds) International RILEM conference on use of superabsorbent polymers and other new additives in concrete. RILEM, Lyngby, pp 243–252Google Scholar
  38. 38.
    Siriwatwechakul W, Siramanont J, Vichit-Vadakan W (2010) Superabsorbent polymer structures. In: International RILEM conference on use of superabsorbent polymers and other new additives in concrete. RILEM, Lyngby, pp 253–262Google Scholar
  39. 39.
    Siriwatwechakul W, Siramanont J, Vichit-Vadakan W (2012) Behavior of superabsorbent polymers in calcium- and sodium-rich solutions. J Mater Civ Eng 24:976–980. doi:10.1061/(ASCE)MT.1943-5533.0000449 CrossRefGoogle Scholar
  40. 40.
    Snoeck D, Tittelboom KV, Steuperaert S et al (2012) Self-healing cementitous materials by the combination of microfibers and superabsorbent polymers. J Intell Mater Syst Struct 25:13–24. doi:10.1177/1045389X12438623 Google Scholar
  41. 41.
    Staples TL, Henton DE, Buchholz FL (1988) Chemistry of superabsorbent polyacrylates. in: Modern superabsorbent polymer technology, pp 19–20Google Scholar
  42. 42.
    Streeter DA, Wolfe WH, Vaughn RE (2012) Field performance of internally cured concrete bridge decks in New York State. ACI SP 290Google Scholar
  43. 43.
    Weiss WJ, Yang W, Shah SP (1998) Shrinkage cracking of restrained concrete slabs. J Eng Mech 124:765–774. doi:10.1061/(ASCE)0733-9399(1998)124:7(765) CrossRefGoogle Scholar
  44. 44.
    Wyrzykowski M, Lura P (2013) Controlling the coefficient of thermal expansion of cementitious materials—a new application for superabsorbent polymers. Cem Concr Compos 35:49–58. doi:10.1016/j.cemconcomp.2012.08.010 CrossRefGoogle Scholar
  45. 45.
    Yarimkaya S, Basan H (2007) Synthesis and swelling behavior of acrylate-based hydrogels. J Macromol Sci Part A 44:699–706. doi:10.1080/10601320701351268 CrossRefGoogle Scholar
  46. 46.
    Zhang Y, Wang L, Li X, He P (2010) Salt-resistant superabsorbents from inverse-suspension polymerization of PEG methacrylate, acryamide and partially neutralized acrylic acid. J Polym Res 18:157–161. doi:10.1007/s10965-010-9402-8 CrossRefGoogle Scholar

Copyright information

© RILEM 2014

Authors and Affiliations

  • Qian Zhu
    • 1
  • Christopher W. Barney
    • 1
  • Kendra A. Erk
    • 1
  1. 1.School of Materials EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations